Abstract:
Disclosed are a design method and structure for a transistor having a relatively large threshold voltage (Vt) variation range due to exacerbated random dopant fluctuation (RDF). Exacerbated RDF and, thereby a relatively large Vt variation range, is achieved through the use of complementary doping in one or more transistor components and/or through lateral dopant non-uniformity between the channel region and any halo regions. Also disclosed are a design method and structure for a random number generator, which incorporates multiple pairs of essentially identical transistors having such a large Vt variation and which relies on Vt mismatch in pairs of those the transistors to generate a multi-bit output (e.g., a unique identifier for a chip or a secret key). By widening the Vt variation range of the transistors in the random number generator, detecting Vt mismatch between transistors becomes more likely and the resulting multi-bit output will be more stable.
Abstract:
A method of detecting electromagnetic radiation with an active pixel sensor photosensitive device having an extremely thin virtual pinning layer formed by inverting semiconductor material at the surface of a photosensitive region. The thin pinning layer improves blue light response. The inverted pinning layer is produced by connecting a negative potential source to a transparent conductive layer, preferably made of indium-tin-oxide positioned over most of the photosensitive region. The conductive layer is insulated from the photosensitive region by a thin insulating layer. Connection to the pinning layer is through a coupling region formed in an area not covered by the conductive and insulating layers. Red light response is improved and the depth of the photosensitive region reduced by creating a strained layer, preferably of germanium silicon, deep within the photosensitive region. The strained layer has a modified bandgap which increases the absorption rate of red light.
Abstract:
Disclosed are a design method and structure for a transistor having a relatively large threshold voltage (Vt) variation range due to exacerbated random dopant fluctuation (RDF). Exacerbated RDF and, thereby a relatively large Vt variation range, is achieved through the use of complementary doping in one or more transistor components and/or through lateral dopant non-uniformity between the channel region and any halo regions. Also disclosed are a design method and structure for a random number generator, which incorporates multiple pairs of essentially identical transistors having such a large Vt variation and which relies on Vt mismatch in pairs of those the transistors to generate a multi-bit output (e.g., a unique identifier for a chip or a secret key). By widening the Vt variation range of the transistors in the random number generator, detecting Vt mismatch between transistors becomes more likely and the resulting multi-bit output will be more stable.
Abstract:
Methods of improving operational parameters between at least a pair of matched transistors, and a set of transistors, are disclosed. One embodiment of a method includes a method of improving at least one of a threshold voltage (Vt) mismatch and current drive between at least a pair of matched transistors for analog applications, the method comprising: forming at least a pair of transistors, each with a gate having a plurality of connected fingers; and optimizing a total length of a channel under the plurality of fingers to attain at least one of: a) a reduced threshold voltage mismatch between the at least pair of transistors, and b) increased current drive for a given threshold voltage mismatch, between the at least pair of transistors, each finger having a length less than an overall length of the channel.
Abstract:
The present invention is a active pixel sensor cell and method of making and using the same. The active pixel sensor cell approximately doubles the available signal for a given quanta of light. The device of the present invention utilizes the holes produced by impinging photons in a active pixel sensor cell circuit. Two active pixel sensor cell circuits, an NFET circuit and PFET circuit are created for use with a photodiode. The NFET circuit captures electron current. The PFET circuit captures hole current. The sum of the currents is approximately double that of conventional active pixel sensor circuits using similarly sized photodiode regions.
Abstract:
The present invention is a complementary active pixel sensor cell and method of making and using the same. The complementary active pixel sensor cell approximately doubles the available signal for a given quanta of light. The device of the present invention utilizes the holes produced by impinging photons in a complementary active pixel sensor cell circuit. Two active pixel sensor cell circuits, an NFET circuit and complementary PFET circuit are created for use with a photodiode. The NFET circuit captures electron current. The PFET circuit captures hole current. The sum of the currents is approximately double that of conventional active pixel sensor circuits using similarly sized photodiode regions.
Abstract:
Methods of improving operational parameters between at least a pair of matched transistors, and a set of transistors, are disclosed. One embodiment of a method includes a method of improving at least one of a threshold voltage (Vt) mismatch and current drive between at least a pair of matched transistors for analog applications, the method comprising: forming at least a pair of transistors, each with a gate having a plurality of connected fingers; and optimizing a total length of a channel under the plurality of fingers to attain at least one of: a) a reduced threshold voltage mismatch between the at least pair of transistors, and b) increased current drive for a given threshold voltage mismatch, between the at least pair of transistors, each finger having a length less than an overall length of the channel.
Abstract:
A method of forming a transistor device includes implanting a diffusion inhibiting species in a semiconductor-on-insulator substrate comprising a bulk substrate, a buried insulator layer, and a semiconductor-on-insulator layer, the semiconductor-on-insulator substrate having one or more gate structures formed thereon such that the diffusion inhibiting species is disposed in portions of the semiconductor-on-insulator layer corresponding to a channel region, and disposed in portions of the buried insulator layer corresponding to source and drain regions. A transistor dopant species is introduced in the source and drain regions. An anneal is performed so as to diffuse the transistor dopant species in a substantially vertical direction while substantially preventing lateral diffusion of the transistor dopant species into the channel region.
Abstract:
Device structures, design structures, and fabrication methods for fin-type field-effect transistor integrated circuit technologies. First and second fins, which constitute electrodes of the device structure, are each comprised of a first semiconductor material. The second fin is formed adjacent to the first fin to define a gap separating the first and second fins. Positioned in the gap is a layer comprised of a second semiconductor material.
Abstract:
A method of forming a semiconductor device is provided that includes forming a gate structure on a channel portion of a semiconductor substrate, forming an interlevel dielectric layer over the gate structure, and forming a opening through the interlevel dielectric layer to an exposed surface of the semiconductor substrate containing at least one of the source region and the drain region. A metal semiconductor alloy contact is formed on the exposed surface of the semiconductor substrate. At least one dielectric sidewall spacer is formed on sidewalls of the opening. An interconnect is formed within the opening in direct contact with the metal semiconductor alloy contact.