摘要:
A logic circuit built in a single-chip microprocessor is configured of electrically-programmable memory elements, and information is written into the memory elements from outside, whereby the logic circuit having any desired logical functions can be constructed. The writing operation of the memory elements can be executed in a short time, and a user can obtain the single-chip microprocessor having hardware of peculiar prescribed specifications, in a short period.
摘要:
A semiconductor integrated circuit device formed on a single chip or a microcomputer integrated on a semiconductor chip includes a central processing unit (CPU), an interface circuit (or an input/output port), a bus coupled to the CPU and the interface circuit (or the input/output port) and a variable logic circuit (or a subprocessor). The variable logic circuit (or the subprocessor) includes non-volatile memory elements storing instructions, a control circuit generating control signals in accordance with the stored instructions, and an arithmetic logic unit controlled by the generated control signals. Information can be written into the non-volatile memory elements from outside to construct the variable logic circuit or the subprocessor with any desired logical functions. The wiring operation of the memory elements can be executed in a short time, and a user can thus quickly obtain a single-chip microprocessor or a single-chip semiconductor integrated circuit device having hardware of peculiar prescribed specifications.
摘要:
A logic circuit built in a single-chip microprocessor is configured of electrically-programmable memory elements, and information is written into the memory elements from outside, whereby the logic circuit having any desired logical functions can be constructed. The writing operation of the memory elements can be executed in a short time, and a user can obtain the single-chip microprocessor having hardware of peculiar prescribed specifications, in a short period.
摘要:
In developing the function of a data processing system using a semiconductor integrated circuit for data processing, comprising a non-volatile logical function block to which data is written electrically and a logical operation block utilizing the logical function block to execute the logic operation, data corresponding to the required specification and function of the system is written in the logical function block. Thereby, flexibility is obtained for setting and changing the required function to the semiconductor integrated circuit. The semiconductor integrated circuit also has an operation specification written to the logical block by a writing device designed to write to a non-volatile semiconductor storage device thereby improving the convenience of setting the functions required of the semiconductor integrated circuit.
摘要:
A typical single chip microcomputer disclosed in the present application comprises a control circuit, a processing circuit and a plurality of address register--status register pairs. A logical unit formed within the control circuit comprises an electrically writable non-volatile-semiconductor memory device. Information can be externally written into the non-volatile semiconductor memory included in the logical unit, and the above described plurality of address register--status register pairs can be arbitrarily selected. As a result, logic function of the logical unit can be arbitrarily established in accordance with externally supplied information. Demanded specifications of various users can be satisfied by the logic function thus arbitrarily formed.
摘要:
A single chip microprocessor 1 includes a CPU 2 and a sub-processor 5 for software implementation of peripheral functions of the microprocessor 1. Sub-processor 5 includes electrically writable internal storage devices microprogram memory unit 13 and sequence control memory unit 62 for storing the software. Peripheral functions are defined and/or modified by writing software into the memory units 13 and 62. Accordingly, the time it takes to define and/or modify the peripheral functions is the time it takes to program the memory units 13 and 62. The sub-processor 5 also includes an execution unit 16 for executing a plurality of tasks and an address control circuit 14 for providing addresses to the microprogram memory unit 13. Additionally, the microprogram memory unit 13 provides microinstructions to the execution unit 16. The sequence control memory unit 62 is part of the address control circuit 14 which also includes a plurality of address registers MAR0 to MAR11. The sequence control memory unit 62 is used for storing information regarding the order of selection of the multiple address registers MAR0 to MAR11. One of the address registers MAR0 to MAR11 is selected each time the sequence control memory unit 62 is read. A microaddress stored in the selected address register is then supplied to the microprogram memory unit 13.
摘要:
A single-chip microcomputer includes a microprocessor, a subprocessor for performing peripheral functions, an external port for controlling an input/output operation from/to an external device and a multi-functional logic-in-memory for inputting a plurality of data from at least one of the microprocessor, the subprocessor and the external port and selecting write data from among the plurality of data in accordance with predetermined priorities.
摘要:
Herein disclosed is a microcomputer MCU adopting the general purpose register method. The microcomputer is enabled to have a small program capacity or a high program memory using efficiency and a low system cost, while enjoying the advantage of simplification of the instruction decoding as in the RISC machine having a fixed length instruction format of the prior art, by adopting a fixed length instruction format having a power of 2 but a smaller bit number than that of the maximum data word length fed to instruction execution means. And, the control of the coded division is executed by noting the code bits.
摘要:
Herein disclosed is a microcomputer MCU adopting the general purpose register method. The microcomputer is enabled to have a small program capacity or a high program memory using efficiency and a low system cost, while enjoying the advantage of simplification of the instruction decoding as in the RISC machine having a fixed length instruction format of the prior art, by adopting a fixed length instruction format having a power of 2 but a smaller bit number than that of the maximum data word length fed to instruction execution means. And, the control of the coded division is executed by noting the code bits.
摘要:
Herein disclosed is a microcomputer MCU adopting the general purpose register method. The microcomputer is enabled to have a small program capacity or a high program memory using efficiency and a low system cost, while enjoying the advantage of simplification of the instruction decoding as in the RISC machine having a fixed length instruction format of the prior art, by adopting a fixed length instruction format having a power of 2 but a smaller bit number than that of the maximum data word length fed to instruction execution means. And, the control of the coded division is executed by noting the code bits.