Abstract:
A method and equipment for removing ammonia from effluent, flue or waste fluids that include oxygen. The method includes at least the following stages: Part of the fluid (1) is conveyed to a decomposition/oxidation unit (2) and part of the fluid (1) is conveyed to a by-pass unit (3); part of the fluid (1) including ammonia is oxidized in the decomposition/oxidation unit (2) of ammonia; the fluid (1H) that was oxidized in the decomposition/oxidation unit (2) and the fluid (1) that was conveyed to the by-pass unit are mixed in a mixing unit (4) to form a fluid mixture (1S), and the fluid mixture (1S) is conveyed to a selective reduction unit (5).
Abstract:
The invention relates to the coating of a particulate filter used in the treatment of exhaust or waste gases. In the manufacturing of the coating according to the invention, there is used a liquid-based sol, where the average particle size of the contained particles is below 100 nm, preferably below 50 nm.
Abstract:
The invention relates to a catalyst for the removal of detrimental halogenated and non-halogenated hydrocarbons in different effluent or process gases. The invention also relates to a method for the manufacture and use of such a catalyst. The catalyst of the invention includes a porous support material, on the surface of which there are one or several noble metals, V, and one or several 1. additives chosen from the group of Cr, Mn, Fe, Co and Ni.
Abstract:
The object of the invention is a porous sheet(s) for treating exhaust gases of combustion engines in open channels. According to the invention at least part of the porous sheet has a covering support having pores over 10 nm and coarse particles over 1.4 μm.
Abstract:
The invention relates to an apparatus for treating diesel exhaust gases including a diesel particulate filter. The invention also relates to a method for manufacturing and using such an apparatus. A particulate filter (DFP) according to the invention has a coating, there is used a sol having the average particle size of the particles below 100 nm, preferably below 50 nm and that a particulate oxidation and that a particulate oxidation catalyst (POC) has been connected in front of the particulate filter in relation to the flow direction of the exhaust gas, which includes at least partially open channels for leading the exhaust gas.
Abstract:
A method and equipment for removing ammonia from effluent, flue or waste fluids that include oxygen. The method includes at least the following stages: Part of the fluid (1) is conveyed to a decomposition/oxidation unit (2) and part of the fluid (1) is conveyed to a by-pass unit (3); part of the fluid (1) including ammonia is oxidized in the decomposition/oxidation unit (2) of ammonia; the fluid (1H) that was oxidized in the decomposition/oxidation unit (2) and the fluid (1) that was conveyed to the by-pass unit are mixed in a mixing unit (4) to form a fluid mixture (1S), and the fluid mixture (1S) is conveyed to a selective reduction unit (5).
Abstract:
The invention relates to the coating of a particulate filter used in the treatment of exhaust or waste gases. In the manufacturing of the coating according to the invention, there is used a liquid-based sol, where the average particle size of the contained particles is below 100 nm, preferably below 50 nm.
Abstract:
A porous sheet for treating exhaust gases of combustion engines in open channels is disclosed. At least part of the porous sheet has a covering support having pores over 10 nm and coarse particles over 1.4 μm.
Abstract:
An adsorbent catalyst for reducing the amounts of nitrogen oxides, hydrocarbons and carbon monoxide contained in exhaust or combustion gases, which catalyst adsorbs nitrogen oxides, when the exhaust or combustion gases contain in excess of oxygen, and liberates and reduces the adsorbed nitrogen oxides, when the gases contain oxygen in stoichiometric amounts or less, which adsorbent catalyst include a porous support material the surface area of which is large and which contains at least the following: a first catalytic metal, which is preferably Pt, a first NOx adsorbent, which preferably contains at least one of the following metals: Ba and Sr, a second NOx adsorbent, which preferably contains at least one of the following metals: La and Y, and a redox NOx adsorbent, which preferably contains at least one of the following metals: Ce, Zr, Ti, Nb, Mn, Pr, Nd, Sm, Eu and G. The invention also relates to methods for reducing the amounts of nitrogen oxides, hydrocarbons and carbon monoxide contained in exhaust or combustion gases.
Abstract:
The invention relates to a catalyst intended for purifying diesel exhaust gases, the catalyst comprising a honeycomb and a support which has been prepared by using titanium dioxide and an inorganic sol, and at least one catalytically active agent.