摘要:
The present invention provides porous body precursors and shaped porous bodies. Also included are catalysts and other end-use products based upon the shaped porous bodies and thus the porous body precursors. Finally, processes for making these are provided. The porous body precursors, comprise one or more topography-enhancing additives, i.e., additives that are capable of at least marginally enhancing one or more of surface area, aspect ratio, pore volume, median pore diameter, surface morphology, etc. Downstream products need not necessarily comprise the topography-enhancing additives in order to exhibit the benefits of their inclusion in the porous body precursors.
摘要:
The present invention provides porous body precursors and shaped porous bodies. Also included are catalysts and other end-use products based upon the shaped porous bodies and thus the porous body precursors. Finally, processes for making these are provided. The porous body precursors, comprise one or more topography-enhancing additives, i.e., additives that are capable of at least marginally enhancing one or more of surface area, aspect ratio, pore volume, median pore diameter, surface morphology, etc. Downstream products need not necessarily comprise the topography-enhancing additives in order to exhibit the benefits of their inclusion in the porous body precursors.
摘要:
The present invention provides porous body precursors and shaped porous bodies. Also included are catalysts and other end-use products based upon the shaped porous bodies and thus the porous body precursors. Finally, processes for making these are provided. The porous body precursors comprise a precursor alumina blend capable of enhancing one or more properties of a shaped porous body based thereupon. The need to employ modifiers to achieve a similar result may thus be substantially reduced, or even avoided, and cost savings are thus provided, as well as savings in time and equipment costs.
摘要:
The present invention provides porous body precursors and shaped porous bodies. Also included are catalysts and other end-use products based upon the shaped porous bodies and thus the porous body precursors. Finally, processes for making these are provided. The porous body precursors comprise a precursor alumina blend capable of enhancing one or more properties of a shaped porous body based thereupon. The need to employ modifiers to achieve a similar result may thus be substantially reduced, or even avoided, and cost savings are thus provided, as well as savings in time and equipment costs.
摘要:
The present invention provides porous body precursors and shaped porous bodies. Also included are catalysts and other end-use products based upon the shaped porous bodies and thus the porous body precursors. Finally, processes for making these are provided. The porous body precursors are germanium doped and comprise a precursor alumina blend. It has now surprisingly been discovered that inclusion of germanium, alone or in combination with such a blend, in porous body precursors can provide control over, or improvements to, surface morphology, physical properties, and/or surface chemistry of shaped porous bodies based thereupon. Surprisingly and advantageously, heat treating the shaped porous bodies can result in additional morphological changes so that additional fine tuning of the shaped porous bodies is possible in subsequent steps.
摘要:
The invention relates to silsesquioxane-titania hybrid polymers, wherein the titania domain size is less than about five nanometers. Such polymers are useful, for example, to form anti-reflection coatings in the fabrication of microelectronic devices.
摘要:
Aluminum nitride powder, aluminum nitride platelets, powdered solid solutions of aluminum nitride and at least one other ceramic material such as silicon carbide, and composites of aluminum nitride and transition metal borides or carbides are prepared by combustion synthesis at low gaseous nitrogen pressures. Porous bodies of aluminum nitride or composites of aluminum nitride and transition metal borides or carbides are also prepared by combustion synthesis at these pressures. The porous bodies are suitable for infiltration, either as formed or after being coated with at least one layer of a silicate material, by polymers or metals. The powders are also suitable for preparing dense sintered bodies. The aluminum nitride powder is also used to prepare AlN sintered bodies.
摘要:
A method for making a moisture-resistant aluminum nitride-containing powder which includes (a) coating a layer of silicate onto aluminum nitride-containing powder having aluminum nitride on at least a portion of its surface and (b) heat-treating the coated aluminum nitride-containing powder at a temperature of from about 350.degree. to about 1000.degree. C. for a period of time sufficient to cause the silicate to react with the surface aluminum nitride thereby forming a layer of Si-Al-O-N bonded to the surface aluminum nitride. The silicate has alkyl or alkoxyalkyl radicals attached thereto. The method yields a moisture- resistant aluminum nitride-containing powder having a layer of Si-Al-O-N reaction-bonded to the surface aluminum nitride.
摘要:
Disclosed is an electrically conductive thermoplastic polymer composition comprising a thermoplastic polymer and a synergistic combination of metal fibers and metal-coated fibers, structures made therefrom, and a process to make said compositions and structures.
摘要:
Semiconductor devices are encapsulated in a thermosetting resin filled with aluminum nitride particles. The aluminum nitride particles have an outer layer of Al-O-N, into which is incorporated amorphous Si-O, which renders them hydrolyrically stable. The aluminum nitride particles impart very high thermal conductivity to the cured resin. In addition, the cured resin has a CTE similar to that of the encapsulated semiconductor device, and has excellent dielectric properties.