Method of making moisture resistant aluminum nitride powder and powder
produced thereby
    4.
    发明授权
    Method of making moisture resistant aluminum nitride powder and powder produced thereby 失效
    制造耐湿氮化铝粉末的方法和由此制备的粉末

    公开(公告)号:US5234712A

    公开(公告)日:1993-08-10

    申请号:US895496

    申请日:1992-06-08

    申请人: Kevin E. Howard

    发明人: Kevin E. Howard

    摘要: A method for making a moisture-resistant aluminum nitride-containing powder which includes (a) coating a layer of silicate onto aluminum nitride-containing powder having aluminum nitride on at least a portion of its surface and (b) heat-treating the coated aluminum nitride-containing powder at a temperature of from about 350.degree. to about 1000.degree. C. for a period of time sufficient to cause the silicate to react with the surface aluminum nitride thereby forming a layer of Si-Al-O-N bonded to the surface aluminum nitride. The silicate has alkyl or alkoxyalkyl radicals attached thereto. The method yields a moisture- resistant aluminum nitride-containing powder having a layer of Si-Al-O-N reaction-bonded to the surface aluminum nitride.

    摘要翻译: 一种制造耐湿氮化铝的粉末的方法,其包括(a)在其表面的至少一部分上将含硅氮化物的氮化铝粉末涂覆到含氮化铝的粉末上,以及(b)将所述涂覆的铝 含氮化物的粉末在约350℃至约1000℃的温度下持续一段足以使硅酸盐与表面氮化铝反应的时间,从而形成结合到表面铝上的Si-Al-ON层 氮化物。 硅酸盐具有与其连接的烷基或烷氧基烷基。 该方法产生具有与表面氮化铝反应结合的Si-Al-O-N层的耐湿氮化铝粉末。

    Semiconductor devices encapsulated with aluminum nitride-filled resins
and process for preparing same
    7.
    发明授权
    Semiconductor devices encapsulated with aluminum nitride-filled resins and process for preparing same 失效
    用氮化铝填充树脂封装的半导体器件及其制备方法

    公开(公告)号:US5627107A

    公开(公告)日:1997-05-06

    申请号:US474228

    申请日:1995-06-07

    申请人: Kevin E. Howard

    发明人: Kevin E. Howard

    摘要: Semiconductor devices are encapsulated in a thermosetting resin filled with aluminum nitride particles. The aluminum nitride particles have an outer layer of Al-O-N, into which is incorporated amorphous Si-O, which renders them hydrolyrically stable. The aluminum nitride particles impart very high thermal conductivity to the cured resin. In addition, the cured resin has a CTE similar to that of the encapsulated semiconductor device, and has excellent dielectric properties.

    摘要翻译: 半导体器件封装在填充有氮化铝颗粒的热固性树脂中。 氮化铝颗粒具有Al-O-N的外层,其中掺入非晶Si-O,使其水解稳定。 氮化铝颗粒对固化树脂赋予非常高的导热性。 此外,固化树脂具有与封装的半导体器件类似的CTE,并且具有优异的介电性能。

    Method for forming beta-silicon carbide whiskers, singly or in a matrix,
using an organotitanium coordination compound catalyst
    8.
    发明授权
    Method for forming beta-silicon carbide whiskers, singly or in a matrix, using an organotitanium coordination compound catalyst 失效
    使用有机钛配位化合物催化剂单独或以基质形成β-碳化硅晶须的方法

    公开(公告)号:US5383421A

    公开(公告)日:1995-01-24

    申请号:US64527

    申请日:1993-05-19

    摘要: Beta-silicon carbide whiskers of superior uniformity can be formed, either singly or in-situ in a matrix, by heating a source for silicon with a source of carbon (greater than 0 percent but less than or equal to about 60 percent of stoichiometric, with respect to the silicon source) in the presence of a titanium-containing catalyst, such as titanocene dichloride. Advantageously, the titanium catalyst can be applied by drying a solution of the titanium catalyst on the carbon and silicon sources. The titanium, carbon and silicon sources are then heated together, preferably to between about 1800.degree. C. and about 1850.degree. C., resulting in a product containing high quality beta-silicon carbide whiskers. The silicon source can be silicon nitride powder, which can either be substantially converted to free-flowing whiskers, or in the alternative, the silicon nitride powder, carbon source and titanium catalyst can be formed into a conventional ceramic matrix prior to conversion to beta-silicon carbide whiskers, so the whiskers formed therein will serve as a reinforcement for the ceramic matrix.

    摘要翻译: 通过用碳源(大于0%但小于或等于化学计量的约60%)加热硅源,可以在基质中单独或原位形成均匀性优异的β-碳化硅晶须, 相对于硅源)在含钛催化剂(例如二氯二茂钛)的存在下进行。 有利地,可以通过将钛催化剂的溶液干燥在碳源和硅源上来施加钛催化剂。 然后将钛,碳和硅源一起加热,优选在约1800℃至约1850℃之间,产生含有高质量β-碳化硅晶须的产品。 硅源可以是氮化硅粉末,其可以基本上转化为自由流动的晶须,或者替代地,氮化硅粉末,碳源和钛催化剂可以在转化成β- 碳化硅晶须,因此其中形成的晶须将用作陶瓷基体的增强材料。