摘要:
Aluminum nitride powder, aluminum nitride platelets, powdered solid solutions of aluminum nitride and at least one other ceramic material such as silicon carbide, and composites of aluminum nitride and transition metal borides or carbides are prepared by combustion synthesis at low gaseous nitrogen pressures. Porous bodies of aluminum nitride or composites of aluminum nitride and transition metal borides or carbides are also prepared by combustion synthesis at these pressures. The porous bodies are suitable for infiltration, either as formed or after being coated with at least one layer of a silicate material, by polymers or metals. The powders are also suitable for preparing dense sintered bodies. The aluminum nitride powder is also used to prepare AlN sintered bodies.
摘要:
Aluminum nitride powder, aluminum nitride platelets, powdered solid solutions of aluminum nitride and at least one other ceramic material such as silicon carbide, and composites of aluminum nitride and transition metal borides or carbides are prepared by combustion synthesis at low gaseous nitrogen pressures. Porous bodies of aluminum nitride or composites of aluminum nitride and transition metal borides or carbides are also prepared by combustion synthesis at these pressures. The porous bodies are suitable for infiltration, either as formed or after being coated with at least one layer of a silicate material, by polymers or metals.
摘要:
Beta-silicon carbide whiskers of superior uniformity can be formed, either singly or in-situ in a matrix, by heating a source for silicon with a source of carbon (greater than 0 percent but less than or equal to about 60 percent of stoichiometric, with respect to the silicon source) in the presence of a titanium-containing catalyst, such as titanocene dichloride. Advantageously, the titanium catalyst can be applied by drying a solution of the titanium catalyst on the carbon and silicon sources. The titanium, carbon and silicon sources are then heated together, preferably to between about 1800.degree. C. and about 1850.degree. C., resulting in a product containing high quality beta-silicon carbide whiskers. The silicon source can be silicon nitride powder, which can either be substantially converted to free-flowing whiskers, or in the alternative, the silicon nitride powder, carbon source and titanium catalyst can be formed into a conventional ceramic matrix prior to conversion to beta-silicon carbide whiskers, so the whiskers formed therein will serve as a reinforcement for the ceramic matrix.
摘要:
The invention relates to silsesquioxane-titania hybrid polymers, wherein the titania domain size is less than about five nanometers. Such polymers are useful, for example, to form anti-reflection coatings in the fabrication of microelectronic devices.
摘要:
A method for making a moisture-resistant aluminum nitride-containing powder which includes (a) coating a layer of silicate onto aluminum nitride-containing powder having aluminum nitride on at least a portion of its surface and (b) heat-treating the coated aluminum nitride-containing powder at a temperature of from about 350.degree. to about 1000.degree. C. for a period of time sufficient to cause the silicate to react with the surface aluminum nitride thereby forming a layer of Si-Al-O-N bonded to the surface aluminum nitride. The silicate has alkyl or alkoxyalkyl radicals attached thereto. The method yields a moisture- resistant aluminum nitride-containing powder having a layer of Si-Al-O-N reaction-bonded to the surface aluminum nitride.
摘要:
The present invention provides porous body precursors and shaped porous bodies. Also included are catalysts and other end-use products based upon the shaped porous bodies and thus the porous body precursors. Finally, processes for making these are provided. The porous body precursors comprise a precursor alumina blend capable of enhancing one or more properties of a shaped porous body based thereupon. The need to employ modifiers to achieve a similar result may thus be substantially reduced, or even avoided, and cost savings are thus provided, as well as savings in time and equipment costs.
摘要:
The present invention provides porous body precursors and shaped porous bodies. Also included are catalysts and other end-use products based upon the shaped porous bodies and thus the porous body precursors. Finally, processes for making these are provided. The porous body precursors comprise a precursor alumina blend capable of enhancing one or more properties of a shaped porous body based thereupon. The need to employ modifiers to achieve a similar result may thus be substantially reduced, or even avoided, and cost savings are thus provided, as well as savings in time and equipment costs.
摘要:
Disclosed is an electrically conductive thermoplastic polymer composition comprising a thermoplastic polymer and a synergistic combination of metal fibers and metal-coated fibers, structures made therefrom, and a process to make said compositions and structures.
摘要:
Semiconductor devices are encapsulated in a thermosetting resin filled with aluminum nitride particles. The aluminum nitride particles have an outer layer of Al-O-N, into which is incorporated amorphous Si-O, which renders them hydrolyrically stable. The aluminum nitride particles impart very high thermal conductivity to the cured resin. In addition, the cured resin has a CTE similar to that of the encapsulated semiconductor device, and has excellent dielectric properties.
摘要:
This invention is a method comprising providing a substrate, forming a first layer on the substrate, wherein the first layer has a dielectric constant of less than 3.0 and comprises an organic polymer, applying an organosilicate resin over the first layer, removing a portion of the organosilicate resin to expose a portion of the first layer, and removing the exposed portions of the first layer. The invention is also an integrated circuit article comprising an active substrate containing transistors and an electrical interconnect structure containing a pattern of metal lines separated, at least partially, by layers or regions of an organic polymeric material having a dielectric constant of less than 3.0 and further comprising a layer of an organosilicate resin above at least one layer of the organic polymer material.