摘要:
A lead free, thick film heating element. Known thick film heating elements contain environmentally hazardous material such as lead. This is particularly problematic when manufacturing thick film heating elements, as lead is often used in thick film formulations to allow the glass-based thick film to be processed at low firing temperatures. Using composite sol gel technology, the present invention provides a method to produce a lightweight mica-based thick film heating element based on thick film materials that are free from lead or cadmium. This mica-based element is lightweight, has the performance advantages of a thick film heating element, and may be processed at a low temperature using thick film materials. Particularly, the present invention provides a lightweight heating element comprised of a mica-based substrate material, a resistive thick film that can be produced by composite sol gel technology, optionally a conductive thick film which is used to make electrical connection to the resistive element, and optionally a topcoat which is used to provide protection against moisture and oxidation. This element is lightweight, provides efficient, rapid heat up and cool down, can be designed to provide even temperature distribution, and delivers power at lower operating temperatures resulting in increased element safety.
摘要:
A method for producing a thermoplastic film-substrate resistive thick film heating element is described, involving the melt bonding of an electrically insulating, optionally filled high temperature thermoplastic film to a substrate. This thick film heating element includes an optionally filled high temperature thermoplastic film-substrate onto which is deposited at least a resistive thick film, and is capable of operating over a wide range of power densities for consumer and industrial heating element applications.
摘要:
The present invention provides an integrated thick film heating element on a substrate made from high temperature melt-flowable thermoplastic polymer/powder additive formulations which form an electrically insulating thermoplastic dielectric coating on the substrate, and electrically resistive lead free films and electrically conductive film formulations that are deposited and fired to form an integrated thick film heating element on a substrate at a processing temperature well below 600° C. This thick film heating element is formed on a substrate material coated first with the electrically insulating, filled melt flowable high temperature thermoplastic polymer/powder composite layer on which is deposited the electrically resistive lead free thick film that is capable of operating over a wide range of power densities for consumer and industrial heating element applications, with suitable electrical insulation properties under temperature cycling to for example 250° C.
摘要:
The present invention provides an integrated thick film heating element on a substrate made from high temperature melt-flowable thermoplastic polymer/powder additive formulations which form an electrically insulating thermoplastic dielectric coating on the substrate, and electrically resistive lead free films and electrically conductive film formulations that are deposited and fired to form an integrated thick film heating element on a substrate at a processing temperature well below 600° C. This thick film heating element is formed on a substrate material coated first with the electrically insulating, filled melt flowable high temperature thermoplastic polymer/powder composite layer on which is deposited the electrically resistive lead free thick film that is capable of operating over a wide range of power densities for consumer and industrial heating element applications, with suitable electrical insulation properties under temperature cycling to for example 250° C.