摘要:
A structure of a stacked barrier layer is provided. A first titanium layer is formed on a semiconductor substrate using plasma enhanced chemical vapor deposition (PECVD). At least a stacked barrier layer is formed on the first titanium layer. The stacked barrier layer includes a first titanium nitride layer and a plasma treated titanium nitride layer. The plasma treated titanium nitride layer is treated using a plasma gas including ammonia gas and nitrogen gas.
摘要:
The invention relates to a novel galvanizing solution for the galvanic deposition of copper. Hydroxylamine sulfate or hydroxylamine hydrochloride are utilized as addition reagents and added to the galvanizing solution during the galvanic deposition of copper which is used in the manufacture of semiconductors.
摘要:
There is a method for enabling a SONOS transistor to be used as both a switch and a memory. FN tunneling is carried out through the source or drain of the transistor, so as to further change the state of electrons stored in an upper charge storage layer adjacent to the drain or source, and the variation in gate-induced drain leakage is used to recognize the memory state of the drain and source. A stable threshold voltage of the transistor is always maintained during this operation. The present invention enables one single transistor having dual features of switch and memory, while being provided with a two-bit memory effect, thus providing a higher memory density in comparison with a general transistor.
摘要:
A Thin Film Transistor comprises a gate electrode formed on a substrate; a gate insulation layer covering the gate electrode; an amorphous silicon (a-Si) region disposed on the gate insulation layer and above the gate electrode; a doped a-Si region formed on the a-Si region; the source and drain metal regions separately formed on the doped a-Si region and above the gate electrode, and isolated from the a-Si region; a passivation layer formed on the gate insulation layer and covering the source, drain and data-line (DL) metal regions; and a conductive layer formed on the passivation layer. The passivation layer has a first, second and third vias for respectively exposing the partial surfaces of the source, drain and DL metal regions. The first, second and third vias are filled with the conductive layer, so that the DL and source metal regions are connected via the conductive layer.
摘要:
A dual-gate transistor includes a first gate formed on a substrate, a first dielectric layer covering the first gate and the substrate, a semiconductor layer formed on the first dielectric layer, first and second electrodes formed on the semiconductor layer and spaced with an interval in order to separate each other, a second dielectric layer covering the first and second electrodes, and a second gate formed on the second dielectric layer, in which at least one of the first and second gates is non-overlapped with the second electrode.
摘要:
A quantum structure and the forming method based on the difference in characteristic of two matters is provided. The forming method includes several steps. At first, providing a first dielectric layer for forming a second dielectric layer thereon. The second dielectric layer has major elements and impurities contained. Treating the second dielectric layer to drive the impurities to form the quantum structure. For example, oxidizing the major elements to drive the impurities in the first dielectric layer to form the quantum structure in said first dielectric layer because the oxidizing capability of the major elements is stronger than that of the impurities.
摘要:
A method for forming thin film transistor with lateral crystallization. The method at least includes the following steps. First of all, an insulation substrate is provided. Then, an amorphous silicon layer is provided on the insulation substrate. The seeds are formed by annealing a portion of the amorphous silicon layer by excimer laser system, and the lateral-growth grain is formed by using the seeds to grow laterally by annealing the amorphous silicon layer, wherein the amorphous silicon layer defines an active region. Then, sequentially a dielectric layer and a polysilicon layer is deposited on the active region, wherein the dielectric layer and the polysilicon layer are gate electrodes, a gate is defined on the substrate, and the polysilicon layer is formed by etching. Next, source and drain regions are formed by implanting numerous ions into amorphous silicon layer by using the gate electrode as a mask.
摘要:
A post-processing treatment of a low dielectric constant material. In the post-processing treatment, a shallow implantation is conducted to form a shallow compact layer over a dielectric film. This shallow compact surface layer acts as a barrier that prevents the absorption of moisture by the dielectric film. The shallow implantation is carried out using boron ions at an energy level of between about 10 and 50 keV and a dosage of between about 1×1015 atm/cm2 and 1×1016 atm/cm2.
摘要翻译:对低介电常数材料进行后处理处理。 在后处理处理中,进行浅注入以在电介质膜上形成浅致密层。 这种浅的紧密表面层用作防止电介质膜吸收水分的屏障。 在约10至50keV的能级和约1×10 15 atm / cm 2和1×10 16 atm / cm 2的剂量之间使用硼离子进行浅注入。
摘要:
A method of forming a polysilicon thin film transistor. An amorphous silicon channel layer is formed over an insulating substrate. An active region is patterned out in the amorphous silicon channel layer. An oxide layer and a gate electrode are sequentially formed over the amorphous silicon channel layer. A lightly doped source/drain region is formed in the amorphous silicon channel layer and then a spacer is formed over the gate electrode. A source/drain region is formed in the amorphous silicon channel layer. A portion of the oxide layer above the source/drain region is removed. An isolation spacer is formed on the sidewalls of the spacer. A self-aligned silicide layer is formed at the top section of the spacer and the source/drain region. Finally, a metal-induced lateral crystallization process is conducted to transform the amorphous silicon channel layer into a lateral-crystallization-polysilicon channel layer.
摘要:
A structure for forming thin film transistor with reduced metal impurities. The structure at least includes the following steps. First of all, an insulation substrate. Then, an insulating gettering layer on the insulation substrate, wherein the amorphous silicon layer defines an active area, and a channel region on the insulating gettering layer, a source region on the insulating gettering layer adjacent to the channel region, a drain region on the insulating gettering layer adjacent to the channel region and opposite to the source region, and a gate on the channel region, wherein the source, drain, insulating gettering layer and channel region are components of a transistor.