摘要:
A method is provided for forming a metal/semiconductor/metal (MSM) current limiter and resistance memory cell with an MSM current limiter. The method comprises: providing a substrate; forming an MSM bottom electrode overlying the substrate; forming a ZnOx semiconductor layer overlying the MSM bottom electrode, where x is in the range between about 1 and about 2, inclusive; and, forming an MSM top electrode overlying the semiconductor layer. The ZnOx semiconductor can be formed through a number of different processes such as spin-coating, direct current (DC) sputtering, radio frequency (RF) sputtering, metalorganic chemical vapor deposition (MOCVD), or atomic layer deposition (ALD).
摘要:
A nanocrystal silicon (Si) quantum dot memory device and associated fabrication method have been provided. The method comprises: forming a gate (tunnel) oxide layer overlying a Si substrate active layer; forming a nanocrystal Si memory film overlying the gate oxide layer, including a polycrystalline Si (poly-Si)/Si dioxide stack; forming a control Si oxide layer overlying the nanocrystal Si memory film; forming a gate electrode overlying the control oxide layer; and, forming source/drain regions in the Si active layer. In one aspect, the nanocrystal Si memory film is formed by depositing a layer of amorphous Si (a-Si) using a chemical vapor deposition (CVD) process, and thermally oxidizing a portion of the a-Si layer. Typically, the a-Si deposition and oxidation processes are repeated, forming a plurality of poly-Si/Si dioxide stacks (i.e., 2 to 5 poly-Si/Si dioxide stacks).
摘要:
A method is provided for forming a metal/semiconductor/metal (MSM) back-to-back Schottky diode from a silicon (Si) semiconductor. The method deposits a Si semiconductor layer between a bottom electrode and a top electrode, and forms a MSM diode having a threshold voltage, breakdown voltage, and on/off current ratio. The method is able to modify the threshold voltage, breakdown voltage, and on/off current ratio of the MSM diode in response to controlling the Si semiconductor layer thickness. Generally, both the threshold and breakdown voltage are increased in response to increasing the Si thickness. With respect to the on/off current ratio, there is an optimal thickness. The method is able to form an amorphous Si (a-Si) and polycrystalline Si (polySi) semiconductor layer using either chemical vapor deposition (CVD) or DC sputtering. The Si semiconductor can be doped with a Group V donor material, which decreases the threshold voltage and increases the breakdown voltage.
摘要:
A metal/semiconductor/metal (MSM) binary switch memory device and fabrication process are provided. The device includes a memory resistor bottom electrode, a memory resistor material over the memory resistor bottom electrode, and a memory resistor top electrode over the memory resistor material. An MSM bottom electrode overlies the memory resistor top electrode, a semiconductor layer overlies the MSM bottom electrode, and an MSM top electrode overlies the semiconductor layer. The MSM bottom electrode can be a material such as Pt, Ir, Au, Ag, TiN, or Ti. The MSM top electrode can be a material such as Pt, Ir, Au, TiN, Ti, or Al. The semiconductor layer can be amorphous Si, ZnO2, or InO2.
摘要:
PrCaMnO (PCMO) thin films with predetermined memory-resistance characteristics and associated formation processes have been provided. In one aspect the method comprises: forming a Pr3+1−xCa2+xMnO thin film composition, where 0.1
摘要翻译:已经提供了具有预定的记忆电阻特性和相关的形成过程的PrCaMnO(PCMO)薄膜。 在一个方面,所述方法包括:形成Pr 3+ 1-x 2 Ca 2 O 3 x MnO薄膜 组成,其中0.1 0.78Mn4+</SUP>0.22O2-2.96 SUB>组合, Mn和O离子的比例变化如下:O 2 - (2.96); Mn(3+)+((1-x)+ 8%); 和Mn 4+(x-8%)。 在另一方面,该方法响应于晶体取向在PCMO膜中产生密度。 例如,如果PCMO膜具有(110)取向,则在垂直于(110)取向的平面中产生在每平方英尺5至6.76个Mn原子的范围内的密度。
摘要:
A method of forming a silicon-rich silicon oxide layer having nanometer sized silicon particles therein includes preparing a substrate; preparing a target; placing the substrate and the target in a sputtering chamber; setting the sputtering chamber parameters; depositing material from the target onto the substrate to form a silicon-rich silicon oxide layer; and annealing the substrate to form nanometer sized silicon particles therein.
摘要:
The present invention discloses a method to achieve grading PCMO thin film for use in RRAM memory devices since the contents of Ca, Mn and Pr in a PCMO film can have great influence on its switching property. By choosing precursors for Pr, Ca and Mn having different deposition rate behaviors with respect to deposition temperature or vaporizer temperature, PCMO thin film of grading Pr, Ca or Mn distribution can be achieved by varying that process condition during deposition. The present invention can also be broadly applied to the fabrication of any multicomponent grading thin film process by varying any of the deposition parameters after preparing multiple precursors to have different deposition rate behaviors with respect to that particular process parameter. The present invention starts with a proper selection of precursors in which the selected precursors have different deposition rates with respect to at least one deposition condition such as deposition temperature or vaporizer temperature. The precursors can then be arranged in different delivery systems, or can be pre-mixed in a proper ratio for use in a delivery system, or in any other combinations such as a mixture of two or three liquid precursors using a direct liquid injection and a separate gaseous precursor delivery system for gaseous process gas. Then by varying the appropriate deposition condition, a grading thin film can be achieved.
摘要:
A method of fabricating a CMR thin film for use in a semiconductor device includes preparing a CMR precursor in the form of a metal acetate based acetic acid solution; preparing a wafer; placing a wafer in a spin-coating chamber; spin-coating and heating the wafer according to the following: injecting the CMR precursor into a spin-coating chamber and onto the surface of the wafer in the spin-coating chamber; accelerating the wafer to a spin speed of between about 1500 RPM to 3000 RPM for about 30 seconds; baking the wafer at a temperature of about 180° C. for about one minute; ramping the temperature to about 230° C.; baking the wafer for about one minute at the ramped temperature; annealing the wafer at about 500° C. for about five minutes; repeating said spin-coating and heating steps at least three times; post-annealing the wafer at between about 500° C. to 600° C. for between about one to six hours in dry, clean air; and completing the semiconductor device.
摘要:
The present invention discloses a novel ferroelectric transistor design using a resistive oxide film in place of the gate dielectric. By replacing the gate dielectric with a resistive oxide film, and by optimizing the value of the film resistance, the bottom gate of the ferroelectric layer is electrically connected to the silicon substrate, eliminating the trapped charge effect and resulting in the improvement of the memory retention characteristics. The resistive oxide film is preferably a doped conductive oxide in which a conductive oxide is doped with an impurity species. The doped conductive oxide is most preferred to be In2O3 with the dopant species being hafnium oxide, zirconium oxide, lanthanum oxide, or aluminum oxide.
摘要翻译:本发明公开了一种使用电阻氧化膜代替栅极电介质的新型铁电晶体管设计。 通过用电阻氧化膜代替栅极电介质,并且通过优化膜电阻的值,铁电层的底栅电连接到硅衬底,消除了捕获的电荷效应并导致存储保持率的提高 特点 电阻氧化膜优选为其中掺杂有杂质物质的导电氧化物的掺杂导电氧化物。 掺杂的导电氧化物最优选为掺杂物质为氧化铪,氧化锆,氧化镧或氧化铝的In 2 N 3 O 3。
摘要:
The present invention discloses a ferroelectric transistor having a conductive oxide in the place of the gate dielectric. The conductive oxide gate ferroelectric transistor can have a three-layer metal/ferroelectric/metal or a two-layer metal/ferroelectric on top of the conductive oxide gate. By replacing the gate dielectric with a conductive oxide, the bottom gate of the ferroelectric layer is conductive through the conductive oxide to the silicon substrate, thus minimizing the floating gate effect. The memory retention degradation related to the leakage current associated with the charges trapped within the floating gate is eliminated. The fabrication of the ferroelectric transistor by a gate etching process or a replacement gate process is also disclosed.