摘要:
A method is provided for forming a Si electroluminescence (EL) device for emitting light at short wavelengths. The method comprises: providing a substrate; forming a first insulator layer overlying the substrate; forming a silicon-rich silicon oxide (SRSO) layer overlying the first insulator layer, embedded with nanocrystalline Si having a size in the range of 0.5 to 5 nm; forming a second insulator layer overlying the SRSO layer; and, forming a top electrode. Typically, the SRSO has a Si richness in the range of 5 to 40%. In one aspect, the SRSO layer is formed using a DC sputtering process. In another aspect, the SRSO formation step includes a rapid thermal annealing (RTA) process subsequent to depositing the SRSO. Likewise, thermal oxidation or plasma oxidation can be performed subsequent to the SRSO layer deposition. The size of Si nanocrystals is decreased in response to above-mentioned deposition, annealing, and oxidation processes.
摘要:
Provided are an electroluminescence (EL) device and corresponding method for forming a rare earth element-doped silicon (Si)/Si dioxide (SiO2) lattice structure. The method comprises: providing a substrate; DC sputtering a layer of amorphous Si overlying the substrate; DC sputtering a rare earth element; in response, doping the Si layer with the rare earth element; DC sputtering a layer of SiO2 overlying the rare earth-doped Si; forming a lattice structure; annealing; and, in response to the annealing, forming nanocrystals in the rare-earth doped Si having a grain size in the range of 1 to 5 nanometers (nm). In one aspect, the rare earth element and Si are co-DC sputtered. Typically, the steps of DC sputtering Si, DC sputtering the rare earth element, and DC sputtering the SiO2 are repeated 5 to 60 cycles, so that the lattice structure includes the plurality (5-60) of alternating SiO2 and rare earth element-doped Si layers.
摘要:
A method of forming a silicon-rich silicon oxide layer having nanometer sized silicon particles therein includes preparing a substrate; preparing a target; placing the substrate and the target in a sputtering chamber; setting the sputtering chamber parameters; depositing material from the target onto the substrate to form a silicon-rich silicon oxide layer; and annealing the substrate to form nanometer sized silicon particles therein.
摘要:
A method is provided for forming a rare earth (RE) element-doped silicon (Si) oxide film with nanocrystalline (nc) Si particles. The method comprises: providing a first target of Si, embedded with a first rare earth element; providing a second target of Si; co-sputtering the first and second targets; forming a Si-rich Si oxide (SRSO) film on a substrate, doped with the first rare earth element; and, annealing the rare earth element-doped SRSO film. The first target is doped with a rare earth element such as erbium (Er), ytterbium (Yb), cerium (Ce), praseodymium (Pr), or terbium (Tb). The sputtering power is in the range of about 75 to 300 watts (W). Different sputtering powers are applied to the two targets. Also, deposition can be controlled by varying the effective areas of the two targets. For example, one of the targets can be partially covered.
摘要:
A method for forming a high-luminescence Si electroluminescence (EL) phosphor is provided, with an EL device made from the Si phosphor. The method comprises: depositing a silicon-rich oxide (SRO) film, with Si nanocrystals, having a refractive index in the range of 1.5 to 2.1, and a porosity in the range of 5 to 20%; and, post-annealing the SRO film in an oxygen atmosphere. DC-sputtering or PECVD processes can be used to deposit the SRO film. In one aspect the method further comprises: HF buffered oxide etching (BOE) the SRO film; and, re-oxidizing the SRO film, to form a SiO2 layer around the Si nanocrystals in the SRO film. In one aspect, the SRO film is re-oxidized by annealing in an oxygen atmosphere. In this manner, a layer of SiO2 is formed around the Si nanocrystals having a thickness in the range of 1 to 5 nanometers (nm).
摘要:
A method is provided for forming a rare earth (RE) element-doped silicon (Si) oxide film with nanocrystalline (nc) Si particles. The method comprises: providing a first target of Si, embedded with a first rare earth element; providing a second target of Si; co-sputtering the first and second targets; forming a Si-rich Si oxide (SRSO) film on a substrate, doped with the first rare earth element; and, annealing the rare earth element-doped SRSO film. The first target is doped with a rare earth element such as erbium (Er), ytterbium (Yb), cerium (Ce), praseodymium (Pr), or terbium (Tb). The sputtering power is in the range of about 75 to 300 watts (W). Different sputtering powers are applied to the two targets. Also, deposition can be controlled by varying the effective areas of the two targets. For example, one of the targets can be partially covered.
摘要:
Flash memory cells are provided with a high-k material interposed between a floating polysilicon gate and a control gate. A tunnel oxide is interposed between the floating polysilicon gate and a substrate. Methods of forming flash memory cells are also provided comprising forming a first polysilicon layer over a substrate. Forming a trench through the first polysilicon layer and into the substrate, and filling the trench with an oxide layer. Depositing a second polysilicon layer over the oxide, such that the bottom of the second polysilicon layer within the trench is above the bottom of the first polysilicon layer, and the top of the second polysilicon layer within the trench is below the top of the first polysilicon layer. The resulting structure may then be planarized using a CMP process. A high-k dielectric layer may then be deposited over the first polysilicon layer. A third polysilicon layer may then be deposited over the high-k dielectric layer and patterned using photoresist to form a flash memory gate structure. During patterning, exposed second polysilicon layer is etched. An etch stop is detected at the completion of removal of the second polysilicon layer. A thin layer of the first polysilicon layer remains, to be carefully removed using a subsequent selective etch process. The high-k dielectric layer may be patterned to allow for formation of non-memory transistors in conjunction with the process of forming the flash memory cells.
摘要:
A method of controlling strain in a single-crystal, epitaxial oxide film, includes preparing a silicon substrate; forming a silicon alloy layer taken from the group of silicon alloy layer consisting of Si1-xGex and Si1-yCy on the silicon substrate; adjusting the lattice constant of the silicon alloy layer by selecting the alloy material content to adjust and to select a type of strain for the silicon alloy layer; depositing a single-crystal, epitaxial oxide film, by atomic layer deposition, taken from the group of oxide films consisting of perovskite manganite materials, single crystal rare-earth oxides and perovskite oxides, not containing manganese; and rare earth binary and ternary oxides, on the silicon alloy layer; and completing a desired device.
摘要翻译:一种控制单晶外延氧化膜中的应变的方法包括制备硅衬底; 从由Si 1-x Ge x Si和Si 1-y C C组成的硅合金层组形成硅合金层 > y sub>; 通过选择合金材料含量来调整硅合金层的晶格常数,并选择一种用于硅合金层的应变; 从由不含锰的钙钛矿亚锰酸盐材料,单晶稀土氧化物和钙钛矿氧化物组成的氧化膜组中,通过原子层沉积法沉积单晶外延氧化膜; 和稀土二元和三元氧化物,在硅合金层上; 并完成所需的设备。
摘要:
A multi-layered barrier metal thin film is deposited on a substrate by atomic layer chemical vapor deposition (ALCVD). The multi-layer film may comprise several different layers of a single chemical species, or several layers each of distinct or alternating chemical species. In a preferred embodiment, the multi-layer barrier thin film comprises a Tantalum Nitride layer on a substrate, with a Titanium Nitride layer deposited thereon. The thickness of the entire multi-layer film may be approximately fifty Angstroms. The film has superior film characteristics, such as anti-diffusion capability, low resistivity, high density, and step coverage, when compared to films deposited by conventional chemical vapor deposition (CVD). The multi-layered barrier metal thin film of the present invention has improved adhesion characteristics and is particularly suited for metallization of a Copper film thereon.
摘要:
A method of making CMOS devices on strained silicon on glass includes preparing a glass substrate, including forming a strained silicon layer on the glass substrate; forming a silicon oxide layer by plasma oxidation of the strained silicon layer; depositing a layer of doped polysilicon on the silicon oxide layer; forming a polysilicon gate; implanting ions to form a LDD structure; depositing and forming a spacer dielectric on the gate structure; implanting and activation ions to form source and drain structures; depositing a layer of metal film; annealing the layer of metal film to form salicide on the source, drain and gate structures; removing any unreacted metal film; depositing a layer of interlayer dielectric; and forming contact holes and metallizing.