摘要:
Chemically-modified surfaces on unoxidized carbon, silicon, and germanium substrates are disclosed. Ultraviolet radiation mediates the reaction of protected &ohgr;-modified, &agr;-unsaturated aminoalkenes (preferred) with hydrogen-terminated carbon, silicon, or germanium surfaces. Removal of the protecting group yields an aminoalkane-modified silicon surface. These amino groups can be coupled to terminal-modified oligonucleotides using a bifunctional crosslinker, thereby permitting the preparation of modified surfaces and arrays. Methods for controlling the surface density of molecules attached to the substrate are also disclosed.
摘要:
Chemically-modified surfaces on unoxidized, bromine- or iodine-terminated carbon, silicon, and germanium substrates are disclosed. Visible light mediates the reaction of protected &ohgr;-modified, &agr;-unsaturated aminoalkenes (preferred) with bromine- or iodine-terminated carbon, silicon, or germanium surfaces. Removal of the protecting group yields an aminoalkane-modified silicon surface. These amino groups can be coupled to terminal-modified oligonucleotides using a bifunctional crosslinker, thereby permitting the preparation of modified surfaces and arrays. Methods for controlling the surface density of molecules attached to the substrate are also disclosed.
摘要:
Chemically-modified surfaces on unoxidized carbon, silicon, and germanium substrates are disclosed. Ultraviolet radiation mediates the reaction of protected ω-modified, α-unsaturated aminoalkenes (preferred) with hydrogen-terminated carbon, silicon, or germanium surfaces. Removal of the protecting group yields an aminoalkane-modified silicon surface These amino groups can be coupled to terminal-modified oligonucleotides using a bifunctional crosslinker, thereby permitting the preparation of modified surfaces and arrays. Methods for controlling the surface density of molecules attached to the substrate are also disclosed.
摘要:
SPR-compatible substrates for high density microarray fabrication and analyses are provided. Novel carbon-on-metal thin film substrate architecture permits the integration of surface plasmon resonance detection with photolithographically fabricated biomolecule arrays for the analysis of biomolecular interactions. The utility of the technology is shown in the analysis of specific DNA-DNA, DNA-RNA and DNA-protein binding interactions. These new substrates may be used to determine the secondary structure of RNA molecules, to probe the sequence-specific binding kinetics and affinity of proteins and small molecules, and as substrates for small-molecule combinatorial chemistry platforms for drug discovery applications.
摘要:
SPR-compatible substrates for high density microarray fabrication and analyses are provided. Novel carbon-on-metal thin film substrate architecture permits the integration of surface plasmon resonance detection with photolithographically fabricated biomolecule arrays for the analysis of biomolecular interactions. The utility of the technology is shown in the analysis of specific DNA-DNA, DNA-RNA and DNA-protein binding interactions. These new substrates may be used to determine the secondary structure of RNA molecules, to probe the sequence-specific binding kinetics and affinity of proteins and small molecules, and as substrates for small-molecule combinatorial chemistry platforms for drug discovery applications.
摘要:
Radio-frequency (RF) excitation is used for direct detection of hybridization events at microelectrodes with surface-attached DNA oligomers. A homodyne reflectometer operates on a high frequency carrier to detect the presence of a low-frequency modulation signal. Without non-linearities in an interface, the modulation signal is not impressed upon the carrier signal. As such, the reflectometer can sensitively measure changes in dielectric properties without interference from other sources of capacitance/resistance unrelated to the reaction at the surface.
摘要:
Systems and methods for fabricating ordered anisotropic organic monolayers are described. An apparatus includes a substrate including a surface; and an ordered organic monolayer chemically bonded to the surface, the ordered organic monolayer including a plurality of cyclic organic molecules, each of the plurality of cyclic organic molecules being obtained from an unsaturated cyclic organic reactant that is chemically bonded to the surface through an addition reaction. The systems and methods provide advantages in that translational and rotational order from the substrate is extended into the monolayer.
摘要:
Disclosed are supercapacitors having organosilicon electrolytes, high surface area/porous electrodes, and optionally organosilicon separators. Electrodes are formed from high surface area material (such as porous carbon nanotubes or carbon nanofibers), which has been impregnated with the electrolyte. These type devices appear particularly suitable for use in electric and hybrid electric vehicles.
摘要:
Disclosed are carbon monofluoride cathode batteries suitable for use at highly elevated temperatures. Rather than using a pure lithium anode, the anode has a base material selected from the group consisting of silicon, germanium and tin, where the base material is lithiated. This renders the anode more resistant to heat. Selected electrolytes are used which also contain lithium salts. Methods for using these batteries at high temperatures are also disclosed.
摘要:
The present invention provides electrodes comprised of metal-coated vertically aligned carbon nanofibers. Arrays of vertically aligned carbon nanofibers provide highly accessible, high density templates having large electrochemically active surface areas that may be modified to further increase the surface area of the nanofibers. The methods of the present invention involve functionalizing the surface of the nanofibers and coating the functionalized surface with metal using electroless deposition. The resulting metal-coated nanofibers form highly stable and highly reproducible electrodes having very high surface areas. The electrodes of the present invention are expected to be useful in a variety of applications, including high-density energy storage, i.e., supercapacitors and fuel cells.