Abstract:
Methods for integration of atomic layer deposition (ALD) of barrier layers and chemical vapor deposition (CVD) of Ru liners for Cu filling of narrow recessed features for semiconductor devices are disclosed in several embodiments. According to one embodiment, the method includes providing a substrate containing a recessed feature, depositing a conformal barrier layer by ALD in the recessed feature, where the barrier layer contains TaN or TaAlN, depositing a conformal Ru liner by CVD on the barrier layer, and filling the recessed feature with Cu metal.
Abstract:
Methods for integration of atomic layer deposition (ALD) of barrier layers and chemical vapor deposition (CVD) of Ru liners for Cu filling of narrow recessed features for semiconductor devices are disclosed in several embodiments. According to one embodiment, the method includes providing a substrate containing a recessed feature, depositing a conformal barrier layer by ALD in the recessed feature, where the barrier layer contains TaN or TaAlN, depositing a conformal Ru liner by CVD on the barrier layer, and filling the recessed feature with Cu metal.
Abstract:
A method for passivating a surface of a semiconductor substrate with fluorine-based layer to protect the surface against oxidation and allow longer queue times. According to one embodiment, the method includes providing a substrate having an oxidized layer formed thereon, replacing the oxidized layer with a fluorine-based layer, exposing the fluorine-based layer to an oxidizing atmosphere, where the fluorine-based layer protects the substrate against oxidation by the oxidizing atmosphere, and removing the fluorine-based layer from the substrate using a plasma process. According to another embodiment, the method includes providing a passivated substrate in a vacuum processing tool, the passivated substrate having a fluorine-based layer thereon that is effective for protecting the passivated substrate against oxidation by an oxidizing atmosphere, removing the fluorine-based layer from the passivated substrate using a microwave plasma process in the vacuum processing tool, thereby forming a clean substrate, and processing the clean substrate under vacuum conditions.
Abstract:
A method for passivating a surface of a semiconductor substrate with fluorine-based layer to protect the surface against oxidation and allow longer queue times. According to one embodiment, the method includes providing a substrate having an oxidized layer formed thereon, replacing the oxidized layer with a fluorine-based layer, exposing the fluorine-based layer to an oxidizing atmosphere, where the fluorine-based layer protects the substrate against oxidation by the oxidizing atmosphere, and removing the fluorine-based layer from the substrate using a plasma process. According to another embodiment, the method includes providing a passivated substrate in a vacuum processing tool, the passivated substrate having a fluorine-based layer thereon that is effective for protecting the passivated substrate against oxidation by an oxidizing atmosphere, removing the fluorine-based layer from the passivated substrate using a microwave plasma process in the vacuum processing tool, thereby forming a clean substrate, and processing the clean substrate under vacuum conditions.