Abstract:
A substrate processing method of processing a substrate using a gas supplied to a chamber includes: (a) setting a threshold value of a pressure of the gas, which is a control target in a flow rate controller configured to measure the pressure of the gas supplied to the chamber and control a flow rate of the gas; (b) supplying the gas into the chamber; (c) measuring the pressure of the gas by the flow rate controller; (d) stopping the supply of the gas into of the chamber; (e) calculating a time when the pressure of the gas measured in (c) becomes equal to or higher than the threshold value; and (f) calculating a total flow rate of the gas supplied into the chamber based on the pressure of the gas measured in (c) and the time calculated in (e).
Abstract:
A gas flow measuring method is provided. A first pressure of a gas in a first and a second flow path is measured. A gas is supplied to the first and the second flow paths by repeating gas supply and stop of the gas supply, and a gas supply time is measured. A second pressure and a temperature of the gas in the first and the second flow path is measured, a third pressure of the gas in the second flow path is measured after the gas is exhausted from the second flow path, and a fourth pressure of the gas in the first and the second flow path is measured. The gas flow supplied to the first and the second flow path is calculated based on the first to fourth pressures and the temperature, and corrected based on a theoretical gas supply time and a calculated average time.
Abstract:
Methods for integration of atomic layer deposition (ALD) of barrier layers and chemical vapor deposition (CVD) of Ru liners for Cu filling of narrow recessed features for semiconductor devices are disclosed in several embodiments. According to one embodiment, the method includes providing a substrate containing a recessed feature, depositing a conformal barrier layer by ALD in the recessed feature, where the barrier layer contains TaN or TaAlN, depositing a conformal Ru liner by CVD on the barrier layer, and filling the recessed feature with Cu metal.
Abstract:
Methods for integration of conformal barrier layers and Ru metal liners with Cu metallization in semiconductor manufacturing are described in several embodiments. According to one embodiment, the method includes providing a substrate containing a recessed feature, depositing a barrier layer in the recessed feature, depositing a Ru metal liner on the barrier layer, and exposing the substrate to an oxidation source gas to oxidize the barrier layer through the Ru metal liner. The method further includes filling the recessed feature with CuMn metal using an ionized physical vapor deposition (IPVD) process, heat-treating the substrate to diffuse Mn from the CuMn metal to the oxidized barrier layer, and reacting the diffused Mn with the oxidized barrier layer to form a Mn-containing diffusion barrier.
Abstract:
Methods for integration of atomic layer deposition (ALD) of barrier layers and chemical vapor deposition (CVD) of Ru liners for Cu filling of narrow recessed features for semiconductor devices are disclosed in several embodiments. According to one embodiment, the method includes providing a substrate containing a recessed feature, depositing a conformal barrier layer by ALD in the recessed feature, where the barrier layer contains TaN or TaAlN, depositing a conformal Ru liner by CVD on the barrier layer, and filling the recessed feature with Cu metal.
Abstract:
A gas flow measuring method is provided. A first pressure of a gas in a first and a second flow path is measured. A gas is supplied to the first and the second flow paths by repeating gas supply and stop of the gas supply, and a gas supply time is measured. A second pressure and a temperature of the gas in the first and the second flow path is measured, a third pressure of the gas in the second flow path is measured after the gas is exhausted from the second flow path, and a fourth pressure of the gas in the first and the second flow path is measured. The gas flow supplied to the first and the second flow path is calculated based on the first to fourth pressures and the temperature, and corrected based on a theoretical gas supply time and a calculated average time.
Abstract:
Methods for integration of conformal barrier layers and Ru metal liners with Cu metallization in semiconductor manufacturing are described in several embodiments. According to one embodiment, the method includes providing a substrate containing a recessed feature, depositing a barrier layer in the recessed feature, depositing a Ru metal liner on the barrier layer, and exposing the substrate to an oxidation source gas to oxidize the barrier layer through the Ru metal liner. The method further includes filling the recessed feature with CuMn metal using an ionized physical vapor deposition (IPVD) process, heat-treating the substrate to diffuse Mn from the CuMn metal to the oxidized barrier layer, and reacting the diffused Mn with the oxidized barrier layer to form a Mn-containing diffusion barrier.