Abstract:
A plasma processing apparatus includes a first radio frequency (RF) power supply unit for applying a first RF power for generating a plasma from a processing gas to at least one of a first and a second electrode which are disposed facing each other in an evacuable processing chamber. The first RF power supply unit is controlled by a control unit so that a first phase at which the first RF power has a first amplitude for generating a plasma and a second phase at which the first RF power has a second amplitude for generating substantially no plasma are alternately repeated at predetermined intervals.
Abstract:
There are provided a substrate processing apparatus and a substrate processing method realizing an effective reduction of a voltage change of a substrate on an electrode to reduce the variation of incident energy of ions entering the substrate. The substrate processing apparatus includes: a first electrode holding a substrate on a main surface of the first electrode; a second electrode facing the first electrode; a RF power source applying to the first electrode a RF voltage whose frequency is equal to or higher than 40 MHz; and a pulse voltage applying unit applying to the first electrode a pulse voltage decreasing in accordance with a lapse of time, by superimposing the pulse voltage on the RF voltage.
Abstract:
In a plasma processing apparatus, a controller specifies a time point when a current starts to flow between an edge ring and a DC power supply after beginning an application of a negative DC voltage to the edge ring from the DC power supply. The controller specifies, from a voltage measurement value indicating a voltage of the edge ring at the time point, an estimate of a self-bias voltage of the edge ring generated by a supply of a radio frequency power. The controller sets a sum of an absolute value of the estimate of the self-bias voltage and a set value as an absolute value of the negative DC voltage to be applied to the edge ring by the DC power supply.
Abstract:
An apparatus for plasma processing is configured to generate plasma in a chamber and periodically apply a pulsed negative DC voltage to an upper electrode from a DC power supply in the plasma processing on a substrate and in plasma cleaning. A duty ratio of the pulsed negative DC voltage used for the plasma processing is smaller than a duty ratio of the pulsed negative DC voltage used for the plasma cleaning. An absolute value of an average value of an output voltage of the DC power supply used for the plasma processing is smaller than an absolute value of an average value of the output voltage of the DC power supply used for the plasma cleaning.
Abstract:
A gas exhaust plate capable of improving a confinement effect of plasma while achieving sufficient conductance is provided. The gas exhaust plate is provided between a sidewall of a processing vessel of a plasma processing apparatus and a mounting table provided within the processing vessel, and is configured to separate a processing space in which a processing is performed by a plasmarized gas from a gas exhaust space which is adjacent to the processing space and through which a gas generated by the processing is exhausted. The gas exhaust plate includes a porous metal sheet.
Abstract:
A substrate processing method uses a substrate processing apparatus including a chamber for accommodating a substrate, a lower electrode to mount the substrate, a first RF power applying unit for applying an RF power for plasma generation into the chamber, and a second RF power applying unit for applying an RF power for bias to the lower electrode. The RF power for plasma generation is controlled to be intermittently changed by changing an output of the first RF power applying unit at a predetermined timing. If no plasma state or an afterglow state exists in the chamber by a control of the first RF power applying unit, an output of the second RF power applying unit is controlled to be in an OFF state or decreased below an output of the second RF power applying unit when the output of the first RF power applying unit is a set output.
Abstract:
In a plasma processing apparatus, a controller specifies a time point when a current starts to flow between an edge ring and a DC power supply after beginning an application of a negative DC voltage to the edge ring from the DC power supply. The controller specifies, from a voltage measurement value indicating a voltage of the edge ring at the time point, an estimate of a self-bias voltage of the edge ring generated by a supply of a radio frequency power. The controller sets a sum of an absolute value of the estimate of the self-bias voltage and a set value as an absolute value of the negative DC voltage to be applied to the edge ring by the DC power supply.
Abstract:
A plasma processing method according to an exemplary embodiment includes generating plasma from a film formation gas in a chamber of a plasma processing apparatus by supplying radio frequency power from a radio frequency power source. The plasma processing method further includes forming a protective film on an inner wall surface of a side wall of the chamber by depositing a chemical species from the plasma on the inner wall surface. In the forming a protective film, a pulsed negative direct-current voltage is periodically applied from a direct-current power source device to an upper electrode of the plasma processing apparatus.
Abstract:
A temperature measurement apparatus includes a light source; a first splitter that splits a light beam into a measurement beam and a reference beam; a reference beam reflector that reflects the reference beam; an optical path length adjustor; a second splitter that splits the reflected reference beam into a first reflected reference beam and a second reflected reference beam; a first photodetector that measures an interference between the first reflected reference beam and a reflected measurement beam obtained by the measurement beam reflected from a target object; a second photodetector that measures an intensity of the second reflected reference beam; and a temperature calculation unit. The temperature calculation unit calculates a location of the interference by subtracting an output signal of the second photodetector from an output signal of the first photodetector, and calculates a temperature of the target object from the calculated location of the interference.
Abstract:
A temperature measurement apparatus includes a light source; a first splitter that splits a light beam into a measurement beam and a reference beam; a reference beam reflector that reflects the reference beam; an optical path length adjustor; a second splitter that splits the reflected reference beam into a first reflected reference beam and a second reflected reference beam; a first photodetector that measures an interference between the first reflected reference beam and a reflected measurement beam obtained by the measurement beam reflected from a target object; a second photodetector that measures an intensity of the second reflected reference beam; and a temperature calculation unit. The temperature calculation unit calculates a location of the interference by subtracting an output signal of the second photodetector from an output signal of the first photodetector, and calculates a temperature of the target object from the calculated location of the interference.