Abstract:
A method MT in an embodiment is a method for etching an etching target layer EL which is included in a wafer W and contains copper. The wafer W includes the etching target layer EL, and a mask MK provided on the etching target layer EL. In the method MT, the etching target layer EL is etched by repeatedly executing a sequence SQ including a first step of generating a plasma of a first gas in a processing container 12 of a plasma processing apparatus 10 in which the wafer W is accommodated, a second step of generating a plasma of a second gas in the processing container 12, and a third step of generating a plasma of a third gas in the processing container 12. The first gas contains a hydrocarbon gas, the second gas contains either a rare gas or a mixed gas of a rare gas and hydrogen gas, and the third gas contains hydrogen gas.
Abstract:
A method of forming, on a substrate having on a surface thereof a film having a trench of a preset pattern and a via at a bottom of the trench, a Cu wiring by burying Cu or Cu alloy in the trench and the via includes forming a barrier film (process 2); forming, on a surface of the barrier film, a wetting target layer of Ru or the like (process 3); forming, on a surface of the wetting target layer, a Cu-based seed film by PVD (process 4); filling the via by heating the substrate and flowing the Cu-based seed film into the via (process 5); and forming, on the substrate surface, a Cu-based film made of the Cu or Cu alloy by PVD under a condition where the Cu-based film is flown on the wetting target layer to bury the Cu-based film in the trench (process 6).
Abstract:
A method of forming a copper wiring buried in a recess portion of a predetermined pattern formed in an interlayer insulation layer of a substrate is disclosed. The method includes: forming a manganese oxide film at least on a surface of the recess portion, the manganese oxide film serving as a self-aligned barrier film through reaction with the interlayer insulation layer; performing hydrogen radical treatment with respect to a surface of the manganese oxide film; placing a metal more active than ruthenium on the surface of the manganese oxide film after the hydrogen radical treatment; forming a ruthenium film on the surface where the metal more active than ruthenium is present; and forming a copper film on the ruthenium film by physical vapor deposition (PVD) to bury the copper film in the recess portion.
Abstract:
A substrate processing apparatus includes a substrate mounting unit, a support unit, a thickness variable layer, and a control unit. The substrate mounting unit has an upper surface that serves as a mounting surface on which a target substrate to be processed is mounted. The support unit has therein a flow path for a heat transfer medium and is configured to support the substrate mounting unit. The thickness variable layer is disposed between the substrate mounting unit and the support unit, and a thickness of the thickness variable layer changes due to expansion or shrinkage caused by a predetermined process. The control unit is configured to control the thickness of the thickness variable layer by performing the predetermined process.
Abstract:
A method of manufacturing a semiconductor device includes preparing a substrate having an interlayer insulating film and a hard mask provided on the interlayer insulating film and having a predetermined pattern, etching the interlayer insulating film to form a trench, forming a MnOx film through an ALD method in a state where the hard mask is left on the interlayer insulating film, the MnOx film being turned into a self-forming barrier film by reacting with the interlayer insulating film, performing a hydrogen radical processing on the MnOx film, forming a Ru film through a CVD method, forming a Cu-based film through a PVD method or by forming a Cu seed through the PVD method, and then performing a Cu plating processing so as to embed the Cu-based film within the trench, and performing a CMP method to remove the hard mask and to form a Cu wiring.
Abstract:
A method for manufacturing a semiconductor device for forming a metal element-containing layer on an insulating layer in which a concave portion is formed, includes: forming an oxide layer including mainly an oxide of the metal element on the insulating layer including the concave portion; and forming a silicate layer including mainly a silicate of the metal element by making the oxide layer into silicate by annealing under a reducing atmosphere.
Abstract:
A manganese-containing film forming method for forming a manganese-containing film on an underlying layer containing silicon and oxygen includes: degassing the underlying layer formed on a processing target by thermally treating the processing target, the underlying layer containing silicon and oxygen; and forming a manganese metal film on the degassed underlying layer by chemical deposition using a gas containing a manganese compound. Forming a manganese metal film includes: setting a film formation temperature to be higher than a degassing temperature; introducing a reducing reaction gas; and forming a manganese-containing film including an interfacial layer formed in an interface with the underlying layer and a manganese metal film formed on the interfacial layer, the interfacial layer being made up of a film of at least one of a manganese silicate and a manganese oxide.
Abstract:
A semiconductor device manufacturing method includes forming a second conductive layer on an underlying layer which has an insulating layer in which a recess is formed and a first conductive layer exposed on a bottom surface of the recess; forming a third conductive layer on the second conductive layer; supplying, into the third conductive layer, a material solid-soluble in the third conductive layer; and heating the third conductive layer into which the solid-soluble material is supplied.
Abstract:
In a Cu wiring manufacturing method, a MnOx film which becomes a self-formed barrier film by reaction with an interlayer insulating film of a substrate is formed on a surface of a recess formed in the interlayer insulating film by ALD. A hydrogen radical process is performed on a surface of the MnOx film to reduce the surface of the MnOx film. A Ru film is formed by CVD on the surface of the MnOx film which has been reduced by the hydrogen radical process. A Cu-based film is formed on the Ru film by PVD to be filled in the recess. When the Ru film is formed, a film-formation condition of the MnOx film and a condition of the hydrogen radical process are set such that nucleus formation is facilitated and the Ru film is formed in a state where a surface smoothness is high.
Abstract:
A method of forming, on a substrate having on a surface thereof a film having a trench of a preset pattern and a via at a bottom of the trench, a Cu wiring by burying Cu or Cu alloy in the trench and the via includes forming a barrier film (process 2); forming, on a surface of the barrier film, a wetting target layer of Ru or the like (process 3); forming, on a surface of the wetting target layer, a Cu-based seed film by PVD (process 4); filling the via by heating the substrate and flowing the Cu-based seed film into the via (process 5); and forming, on the substrate surface, a Cu-based film made of the Cu or Cu alloy by PVD under a condition where the Cu-based film is flown on the wetting target layer to bury the Cu-based film in the trench (process 6).