Abstract:
A monitoring apparatus for monitoring a raw material tank monitors the temperature of the raw material tank when the temperature of the raw material tank storing a solid or liquid raw material is raised to a set temperature by a heating unit. The monitoring apparatus includes: a temperature determination unit configured to determine whether the temperature has reached a stable range including the set temperature, and determine whether the temperature has deviated from the stable range; and a setting unit configured to set the set temperature of the heating unit to 0° C. when a predetermined timeout time has elapsed from a time point at which the temperature determination unit determined that the temperature deviated from the stable range.
Abstract:
A ready for rotation state detection device is configured to detect a state in which a substrate, which is placed on a concave portion formed in a surface of a turntable, will not fly out of the concave portion when the turntable is rotated in a chamber. The ready for rotation state detection device includes a ready for rotation state detection unit configured to detect that a height of a surface of an end of the substrate is equal to or lower than a predetermined value indicating that the turntable is rotatable, upon receiving the substrate on the concave portion.
Abstract:
There is provided an apparatus of performing a plasma process on substrates mounted on an upper surface of a rotary table. The apparatus includes: a heater for heating the substrates; a process gas supply part for supplying a process gas toward the upper surface of the rotary table; an antenna for generating an inductively coupled plasma by converting the process gas to plasma; a light detection part for detecting respective light intensities of R, G and B component as light color components; a calculation part for obtaining an evaluation value corresponding to a change amount before and after supplying a high-frequency power to the antenna, with respect to at least one of the respective light intensities; and an ignition determination part for comparing the evaluation value with a threshold value and to determine that ignition of plasma is not generated if the evaluation value does not exceed the threshold value.
Abstract:
A ready for rotation state detection device is configured to detect a state in which a substrate, which is placed on a concave portion formed in a surface of a turntable, will not fly out of the concave portion when the turntable is rotated in a chamber. The ready for rotation state detection device includes a ready for rotation state detection unit configured to detect that a height of a surface of an end of the substrate is equal to or lower than a predetermined value indicating that the turntable is rotatable, upon receiving the substrate on the concave portion.
Abstract:
A monitoring apparatus for monitoring a raw material tank monitors the temperature of the raw material tank when the temperature of the raw material tank storing a solid or liquid raw material is raised to a set temperature by a heating unit. The monitoring apparatus includes: a temperature determination unit configured to determine whether the temperature has reached a stable range including the set temperature, and determine whether the temperature has deviated from the stable range; and a setting unit configured to set the set temperature of the heating unit to 0° C. when a predetermined timeout time has elapsed from a time point at which the temperature determination unit determined that the temperature deviated from the stable range.
Abstract:
A substrate ejection detection device is used for substrate processing apparatus configured to process a substrate by continuously rotating a turntable holding the substrate on a concave portion formed in a surface thereof to receive the substrate thereon. In the substrate processing device, the turntable is substantially horizontally provided in a chamber. The substrate ejection detection device includes a substrate ejection determination unit configured to determine whether the substrate is out of the concave portion by determining whether the substrate exists on the concave portion while rotating the turntable.
Abstract:
A semiconductor manufacturing apparatus includes one or more process modules, a scheduler, and a transfer controller. A product wafer of a lot that is transferred from a load port to one of the one or more process modules is replenished such that a total number of wafers that are simultaneously processed in the one or more process modules becomes N. When an advance lot being processed and a post lot to be processed subsequent to the advance lot have a same processing condition, the scheduler creates the transfer plan to replenish with the product wafer of the post lot instead of a dummy wafer such that the transfer controller transfers the product wafer and the dummy wafer to the one or more process modules according to the created transfer plan.
Abstract:
A substrate processing apparatus is provided with a process module including a processing container, a rotary table installed within the processing container, the rotary table having a plurality of placing regions to receive substrates, and a process gas supply unit supplying a process gas to the placing regions, a load port in which a transfer container is placed, a dummy substrate receiving unit, a transfer chamber including a transfer mechanism delivering the product substrates or the dummy substrates between the transfer container or the dummy substrate receiving unit and the rotary table, a setting unit setting a placing region to which one of the product substrates is to be transferred, and a control unit outputting a control signal such that the dummy substrates are carried into the remaining placing regions.
Abstract:
Disclosed is a processing apparatus. The processing apparatus includes: a load port in which a conveyance container accommodating a plurality of semiconductor wafers is placed; a dummy wafer storage area in which a conveyance container accommodating a plurality of dummy wafers is placed; a normal-pressure conveyance room in which a first conveyance arm is installed; an equipment that processes the plurality of semiconductor wafers in a state where the semiconductor wafers and the dummy wafers which are conveyed are placed in slots, respectively; and a controller that controls each component of the processing apparatus. The controller classifies the dummy wafers accommodated in the conveyance container into a plurality of groups, and controls the first conveyance arm to preferentially convey the dummy wafers within one of the classified groups to the equipment and, in replacing the dummy wafers, to perform replacement of the dummy wafers group to group as classified.