摘要:
A semiconductor memory element is disclosed which can share the terminals easily among a plurality of memory elements and can pass a high current and which is strong against the noises. In order to accomplish this a control electrode is formed to cover the entirety of thin film regions connecting low-resistance regions. As a result, the element can have a small size and can store information with high density. Thus, a highly integrated, low power consumption non-volatile memory device can be realized with reduced size.
摘要:
A semiconductor memory element subject to a threshold voltage controlling method other than those based on low leak currents or on the implantation of impurities. Such semiconductor elements are used to form semiconductor memory elements that are employed in scaled-down structures and are conducive to high-speed write operations thanks to a sufficiently prolonged refresh cycle. These semiconductor memory elements are in turn used to constitute a semiconductor memory device. A very thin semiconductor film is used as channels so that leak currents are reduced by the quantum-mechanical containment effect in the direction of film thickness. An amount of electrical charges in each charge accumulating region is used to change conductance between a source and a drain region of each read transistor structure, the conductance change being utilized for data storage. A channel of a transistor for electrically charging or discharging each charge accumulating region is made of a semiconductor film 5 nm thick at most. The arrangement affords both high-speed data write performance and an extended data retention time. The invention provides a high-speed, power-saving semiconductor device of high integration particularly advantageous for producing a small-scale system of low-power dissipation.
摘要:
A semiconductor quantum memory element is disclosed which can share the terminals easily among a plurality of memory elements and can pass a high current and which is strong against noise. In order to accomplish this a control electrode is formed so as to cover the entirety of thin film regions connecting low-resistance regions. As a result, the element can have a small size and can store information with high density. Thus, a highly integrated, low power consumption non-volatile memory device can be realized with reduced size. A method of forming a memory element is also disclosed including performing the following steps of forming a first insulating layer, a second insulating layer, a first conductive layer and a layer of amorphous silicon. The amorphous silicon layer is crystallized to a polycrystalline silicon film. Semiconductor drains are deposited to form charge trapping and storage regions. A fourth insulating layer is deposited over the drains and a second conductive layer is deposited over a layer of silicon dioxide to form a control electrode of the memory element.
摘要:
A memory cell with a small surface area is fabricated by forming source lines and data lines above and below and by running the channels to face up and down. The local data lines for each vertically stacked memory cell are connected to a global data line by way of separate selection by a molecular oxide semiconductor, and use of a large surface area is avoided by making joint use of peripheral circuits such as global data lines and sensing amplifiers by performing read and write operations in a timed multiplex manner. Moreover, data lines in multi-layers and memory cells (floating electrode cell) which are non-destructive with respect to readout are utilized to allow placement of memory cells at all intersecting points of word lines and data lines while having a folded data line structure. An improved noise tolerance is attained by establishing a standard threshold voltage for identical dummy cells even in any of the read verify, write verify and erase verify operations. A register to temporarily hold write data in a memory cell during writing is also used as a register to hold a flag showing that writing has ended during write verify. Also, a circuit comprised of one nMOS transistor is utilized as a means to change values on the write-end flag.
摘要:
A memory cell with a small surface area is fabricated by forming source lines and data lines above and below and by running the channels to face up and down. The local data lines for each vertically stacked memory cell are connected to a global data line by way of separate selection by a molecular oxide semiconductor, and use of a large surface area is avoided by making joint use of peripheral circuits such as global data lines and sensing amplifiers by performing read and write operations in a timed multiplex manner. Moreover, data lines in multi-layers and memory cells (floating electrode cell) which are non-destructive with respect to readout are utilized to allow placement of memory cells at all intersecting points of word lines and data lines while having a folded data line structure. An improved noise tolerance is attained by establishing a standard threshold voltage for identical dummy cells even in any of the read verify, write verify and erase verify operations. A register to temporarily hold write data in a memory cell during writing is also used as a register to hold a flag showing that writing has ended during write verify. Also, a circuit comprised of one nMOS transistor is utilized as a means to change values on the write-end flag.
摘要:
A quantum semiconductor memory element is disclosed which can share the terminals easily among a plurality of memory elements and can pass a high current and which is resistant to interference from noises. In order to accomplish this a control electrode is formed to cover the entirety of thin film regions connecting low-resistance regions. As a result, the element can have a small size and can store information with high density. Thus, a highly integrated, low power consumption non-volatile quantum memory device can be realized with reduced size.
摘要:
A memory cell with a small surface area is fabricated by forming source lines and data lines above and below and by running the channels to face up and down. The local data lines for each vertically stacked memory cell are connected to a global data line by way of separate selection by a molecular oxide semiconductor, and use of a large surface area is avoided by making joint use of peripheral circuits such as global data lines and sensing amplifiers by performing read and write operations in a timed multiplex manner. Moreover, data lines in multi-layers and memory cells (floating electrode cell) which are non-destructive with respect to readout are utilized to allow placement of memory cells at all intersecting points of word lines and data lines while having a folded data line structure. An improved noise tolerance is attained by establishing a standard threshold voltage for identical dummy cells even in any of the read verify, write verify and erase verify operations. A register to temporarily hold write data in a memory cell during writing is also used as a register to hold a flag showing that writing has ended during write verify. Also, a circuit comprised of one nMOS transistor is utilized as a means to change values on the write-end flag.
摘要:
A very thin semiconductor film is used for channels of semiconductor memory elements such that leak currents are reduced by the quantum-mechanical containment effect in the direction of film thickness. The amount of electrical charge accumulated in each charge accumulating region is used to change the conductance between a source region and a drain region of each read transistor structure. This conductance change is utilized for data storage. The thickness of the channel of the write transistor structure is preferably no more than 5 nm. According to one embodiment, the channel of the write transistor is formed by a semiconductor film deposited on a surface intersecting a principal plane of the substrate.
摘要:
A very thin semiconductor film is used for channels of semiconductor memory elements such that leak currents are reduced by the quantum-mechanical containment effect in the direction of film thickness. The amount of electrical charge accumulated in each charge accumulating region is used to change conductance between a source and a drain region of each read transistor structure. The conductance change is utilized for data storage. The thickness of the channel of the write transistor structure is preferably no more than 5 nm. According to one embodiment, the channel of the write transistor is formed by a semiconductor film deposited on a surface intersecting a principal plane of the substrate.
摘要:
A semiconductor quantum memory element is disclosed which can share the terminals easily among a plurality of memory elements and can pass a high current and which is strong against noise. In order to accomplish this a control electrode is formed so as to cover the entirety of thin film regions connecting low-resistance regions. As a result, the element can have a small size and can store information with high density. Thus, a highly integrated, low power consumption non-volatile memory device can be realized with reduced size. A method of forming a memory element is also disclosed including performing the following steps of forming a first insulating layer, a second insulating layer, a first conductive layer and a layer of amorphous silicon. The amorphous silicon layer is crystallized to a polycrystalline silicon film. Semiconductor drains are deposited to form charge trapping and storage regions. A fourth insulating layer is deposited over the drains and a second conductive layer is deposited over a layer of silicon dioxide to form a control electrode of the memory element.