摘要:
A method for forming a semiconductor isolation trench includes forming a pad oxide layer over a substrate and forming a barrier layer over the substrate. A masking layer is formed over the barrier layer and is patterned to form at least one opening in the masking layer. At least a part of the barrier layer and at least a part of the pad oxide layer are etched through the at least one opening resulting in a trench pad oxide layer. Etching of the trench pad oxide layer stops substantially at a top surface of the substrate within the isolation trench. An oxide layer is grown by diffusion on at least the top surface of the substrate corresponding to the at least one isolation trench. The method further includes etching the oxide layer and at least a portion of the substrate to form at least one isolation trench opening.
摘要:
A semiconductor device is provided for implementing at least one logic element. The semiconductor device includes a semiconductor substrate with a first transistor and a second transistor formed on the semiconductor substrate. Each of the transistors comprises a source, a drain, and a gate. A trench silicide layer electrically connects one of the source or the drain of the first transistor to one of the source or the drain of the second transistor.
摘要:
An approach for providing MOL constructs using diffusion contact structures is disclosed. Embodiments include: providing a first diffusion region in a substrate; providing, via a first lithography process, a first diffusion contact structure; providing, via a second lithography process, a second diffusion contact structure; and coupling the first diffusion contact structure to the first diffusion region and the second diffusion contact structure. Embodiments include: providing a second diffusion region in the substrate; providing a diffusion gap region between the first and second diffusion regions; providing the diffusion contact structure over the diffusion gap region; and coupling, via the diffusion contact structure, the first and second diffusion regions.
摘要:
A management system for processing message-based communications comprising a plurality of servers configured to implement a plurality of sessions that process a plurality of messages, a plurality of message queues coupled to the servers and configured to exchange the messages with the servers, and a workload manager coupled to the servers and the message queues and configured to reallocate the sessions to the different servers and the corresponding message queues to achieve load balance between the servers and the message queues in a recurring manner during processing of the messages by the servers based on a depth of each of the message queues, a quantity of sessions for each of the servers, and a workload manager configuration.
摘要:
One illustrative device disclosed herein includes a continuous active region defined in a semiconducting substrate, first and second transistors formed in and above the continuous active region, each of the first and second transistors comprising a plurality of doped regions formed in the continuous active region, a conductive isolating electrode positioned above the continuous active region between the first and second transistors and a power rail conductively coupled to the conductive isolating electrode.
摘要:
A semiconductor device includes a semiconductor substrate having a diffusion region. A transistor is formed within the diffusion region. A power rail is disposed outside the diffusion region. A contact layer is disposed above the substrate and below the power rail. A via is disposed between the contact layer and the power rail to electrically connect the contact layer to the power rail. The contact layer includes a first length disposed outside the diffusion region and a second length extending from the first length into the diffusion region and electrically connected to the transistor.
摘要:
A process for fabricating a MOSFET on an SOI substrate includes the formation of an active region (14) isolated by field isolation regions (16, 18) and by an insulating layer (12). A recess (26) is formed in the active region (14) using a masking layer (22) having an opening (24) therein. A gate dielectric layer (32) is formed in the recess (26) and a polycrystalline silicon layer (34) is deposited to overlie the masking layer (22), and to fill the recess (26). A planarization process is carried out to form a gate electrode (36) in the recess (26), and source and drain regions (40, 42) are formed in a self-aligned manner to the gate electrode (36). A channel region (44) resides intermediate to the source and drain regions (40, 42) and directly below the gate electrode (36).
摘要:
A semiconductor device includes a substrate with first and second transistors disposed thereon and including sources, drains, and gates, wherein the first and second gates extend longitudinally as part of linear strips that are parallel to and spaced apart. The device further includes a first CB layer forming a local interconnect electrically connected to the first gate, a second CB layer forming a local interconnect electrically connected to the second gate, and a CA layer forming a local interconnect extending longitudinally between first and second ends of the CA layer. The first and second CB layers and the CA layer are disposed between a first metal layer and the substrate. The first metal layer is disposed above each source, drain, and gate of the transistors, The CA layer extends parallel to the first and second linear strips and is substantially perpendicular to the first and second CB layers.
摘要:
Methodology enabling selectively connecting fin structures using a segmented trench salicide layer, and the resulting device are disclosed. Embodiments include: providing on a substrate at least one gate structure; providing first and second fin structures in a vertical direction intersecting with the at least one gate structure; and providing a first segment of a salicide layer, the first segment being formed along a horizontal direction and being connected with the second fin structure and separated from the first fin structure.
摘要:
An approach for providing timing-closed FinFET designs from planar designs is disclosed. Embodiments include: receiving one or more planar cells associated with a planar design; generating an initial FinFET design corresponding to the planar design based on the planar cells and a FinFET model; and processing the initial FinFET design to provide a timing-closed FinFET design. Other embodiments include: determining a race condition associated with a path of the initial FinFET design based on a timing analysis of the initial FinFET design; and increasing delay associated with the path to resolve hold violations associated with the race condition, wherein the processing of the initial FinFET design is based on the delay increase.