摘要:
The present invention provides a three-dimensional shape measuring device and a sensor employed for the three-dimensional shape measuring device. The three-dimensional shape measuring device comprises a light source for scanning plane light over the surface of an object, an image sensor opposed to the object and provided with a plurality of pixels, an optical system for forming an image of a bright line appearing on the surface of the object due to plane light on the image sensor, a plurality of capacitors installed in association with pixels of the image sensor, a charger for storing given charges in a plurality of capacitors before plane light scanning starts, a plurality of dischargers lying in association with capacitors and gradually discharging the capacitors for pixels corresponding to a bright line image from when plane light scanning starts until the bright line image passes through the pixels, and an arithmetic logic means for computing charges remaining in the plurality of capacitors after plane light scanning is completed and thus providing a three-dimensional shape of an object. Thereby, a three-dimensional shape of an object can be measured at a high speed with high precision.
摘要:
In forming an element isolating region in a silicon semiconductor layer of an SOI substrate, a silicon nitride film of a predetermined thickness is deposited over an oxide film formed on a SOI layer. The silicon nitride film is patterned in a design size of active regions, and side walls of a silicon nitride film are formed on the side surfaces of the patterned silicon nitride film. A first LOCOS process is carried out using the nitride film as an oxidation mask. A LOCOS film formed by the first LOCOS process is removed to form narrower concavities under the side walls. Then, another silicon nitride film is deposited, and is removed leaving portions thereof forming the concavities. Then, a second LOCOS process is carried out to form a LOCOS film as an element isolating region. The second LOCOS process uses the oxidation mask having the narrow cavities, so that stress at the boundary of the active region and the element isolation region is reduced, and the growth of bird's beaks can be suppressed.
摘要:
In a miniaturized complete CMOS SRAM of a TFT load type, a field effect thin-film transistor (TFT) can achieve stable reading and writing operation of a memory cell and can reduce power consumption thereof. The field effect thin-film transistor formed on an insulator includes an active layer and a gate electrode. The gate electrode is formed on a channel region of the active layer with a gate insulating film therebetween. The active layer is formed of a channel region and source/drain regions. The channel region is formed of a monocrystal silicon layer and does not includes a grain boundary. The source/drain regions is formed of a polysilicon layer. The channel region has a density of crystal defects of less than 10.sup.9 pieces/cm.sup.2. The thin film transistor shows an ON current of 0.25 .mu.A/.mu.m per channel width of 1 .mu.m and an OFF current of 15 fA/.mu.m. The thin-film transistor can be applied to a p-channel MOS transistor serving as a load transistor in a memory cell of a CMOS type SRAM.
摘要:
In forming an element isolating region in a silicon semiconductor layer of an SOI substrate, a silicon nitride film of a predetermined thickness is deposited over an oxide film formed on a SOI layer. The silicon nitride film is patterned in a design size of active regions, and side walls of a silicon nitride film are formed on the side surfaces of the patterned silicon nitride film. A first LOCOS process is carried out using the nitride film as an oxidation mask. A LOCOS film formed by the first LOCOS process is removed to form narrower concavities under the side walls. Then, another silicon nitride film is deposited, and is removed leaving portions thereof forming the concavities. Then, a second LOCOS process is carried out to form a LOCOS film as an element isolating region. The second LOCOS process uses the oxidation mask having the narrow cavities, so that stress at the boundary of the active region and the element isolation region is reduced, and the growth of bird's beaks can be suppressed.
摘要:
In a miniaturized complete CMOS SRAM of a TFT load type, a field effect thin-film transistor (TFT) can achieve stable reading and writing operation of a memory cell and can reduce power consumption thereof. The field effect thin-film transistor formed on an insulator includes an active layer and a gate electrode. The gate electrode is formed on a channel region of the active layer with a gate insulating film therebetween. The active layer is formed of a channel region and source/drain regions. The channel region is formed of a monocrystal silicon layer and does not includes a grain boundary. The source/drain regions is formed of a polysilicon layer. The channel region has a density of crystal defects of less than 10.sup.9 pieces/cm.sup.2. The thin film transistor shows an ON current of 0.25 .mu.A/.mu.m per channel width of 1 .mu.m and an OFF current of 15 fA/.mu.m. The thin-film transistor can be applied to a p-channel MOS transistor serving as a load transistor in a memory cell of a CMOS type SRAM.
摘要:
According to a semiconductor device of the present invention, a field oxide film is formed so as to cover the main surface of an SOI layer and to reach the main surface of a buried oxide film. As a result, a pMOS active region of the SOI and an nMOS active region of the SOI can be electrically isolated completely. Therefore, latchup can be prevented completely. As a result, it is possible to provide a semiconductor device using an SOI substrate which can implement high integration by eliminating reduction of the breakdown voltage between source and drain, which was a problem of a conventional SOI field effect transistor, as well as by efficiently disposing a body contact region, which hampers high integration, and a method of manufacturing the same.
摘要:
A semiconductor device in which parasitic resistance of source/drain regions can be reduced than the parasitic resistance of the drain region, and manufacturing method thereof, can be obtained. In the semiconductor device, inactivating ions are implanted only to the source region of the semiconductor layer, so as to damage the crystal near the surface of the semiconductor layer, whereby siliciding reaction is promoted. Therefore, in the source region, a titanium silicide film which is thicker can be formed.
摘要:
An I/O protection circuit includes a P-channel MOS transistor connected between an input terminal and a power supply line, and an N-channel MOS transistor connected between the input terminal and a ground line. Gate electrodes of both the transistors are floated. The transistors may be replaced with gate diodes. Further, gate electrodes may be formed from the same layer as a gate electrode provided for field shielding.
摘要:
A semiconductor device in which parasitic resistance of source/drain regions can be reduced than the parasitic resistance of the drain region, and manufacturing method thereof, can be obtained. In the semiconductor device, inactivating ions are implanted only to the source region of the semiconductor layer, so as to damage the crystal near the surface of the semiconductor layer, whereby siliciding reaction is promoted. Therefore, in the source region, a titanium silicide film which is thicker can be formed.
摘要:
A buried oxide film and an SOI layer are formed on the main surface of a substrate. A nitride film patterned in predetermined configuration is formed on the surface of the SOI layer. The first selective oxidation treatment is applied to the SOI layer with the nitride film used as a mask. At this stage, the isolating oxide film is formed not to reach the buried oxide film. Anisotropic etching is applied to the isolating oxide film with the nitride film used as a mask. A sidewall insulating layer of oxidation-resistant material is formed on the sidewall of the nitride film. With the sidewall insulating layer and nitride film used as masks, the second selective oxidation treatment is applied to the SOI layer, thereby forming an isolating oxide film. Thereby, it becomes possible to prevent a parasitic MOS transistor being formed in the end of the SOI layer.