摘要:
A winding device has a drive shaft having a flange, and a holder rotatably mounted on the drive shaft in covering relation to the flange, for winding the web therearound. The holder has a first torque adjustment plate rotatably mounted on the drive shaft and having a surface disposed in facing relation to a surface of the flange, the first torque adjustment plate supporting a plurality of magnets on the surface thereof, and a second torque adjustment plate rotatably mounted on the drive shaft and having a surface disposed in facing relation to an opposite surface of the flange, the second torque adjustment plate supporting a plurality of magnets on the surface thereof. The winding device is capable of winding relatively wide webs having a large thickness ranging from 100 to 150 &mgr;m, e.g., photographic photosensitive webs (films), with a low tension fluctuation ratio of ±5% or less, while producing large tension easily and stably. The winding device is constructed for easy maintenance.
摘要:
A thin film semiconductor substrate for a display device includes a thin film semiconductor circuit layer formed on a single crystal semiconductor substrate and a support substrate formed over the thin film semiconductor circuit layer. An adhesive layer made of a fluorine-containing epoxy family adhesive is provided between the insulating layer and the support substrate. When the single crystal semiconductor substrate is removed, the yield rate in production of the thin film semiconductor substrate is greatly improved.
摘要:
A process for manufacturing a light valve device comprises forming a transparent insulating thin film layer on a surface of a semiconductor substrate, and forming a single crystal semiconductor thin film on a surface of the transparent insulating thin film layer. A portion of the single crystal semiconductor thin film is then removed and at least one pixel electrode is formed on the transparent insulating thin film layer at a region where the single crystal semiconductor thin film has been removed. A driving unit is then formed in the single crystal semiconductor thin film. Thereafter, a carrier substrate is laminated using an adhesive on the surface of the semiconductor substrate at a region corresponding to the pixel electrode and the driving unit. The semiconductor substrate is then removed to expose a surface of the transparent insulating thin film layer and through-holes and a metal film are formed on the exposed surface thereof. Thereafter, the metal film is removed to form a light shielding layer for covering at least a portion of a region of the transparent insulating thin film layer occupied by the driving unit and to form an electrode pad for connection to the driving unit through the through-holes. A substrate is then arranged opposite to the transparent insulating thin film to define a gap therebetween, and an electrooptical material is disposed in the gap.
摘要:
A process for manufacturing a semiconductor device comprises forming an SOI substrate by depositing an insulating film of silicon dioxide on a surface of a temporary silicon substrate, thermally bonding a semiconductor substrate of single crystal silicon on a surface of the insulating film, and polishing the semiconductor substrate to form a single crystal semiconductor thin film. A semiconductor integrated circuit is then formed in the single crystal semiconductor thin film. Thereafter, a support substrate is fixedly adhered in face-to-face relation to a surface of the semiconductor integrated circuit opposite to the temporary substrate. The temporary substrate is then removed to expose a surface of the insulating film. The exposed surface of the insulating film is then subjected to a treatment including at least forming an electrode.
摘要:
A semiconductor device having a double-side wiring structure, in which a single crystal semiconductor thin film is formed integrally with transistor elements and is laminated on an insulating thin film. The single crystal semiconductor thin film is formed with through-holes and the insulating thin film is formed on its back side with electrodes and a shielding film. A light valve device using the semiconductor device is also disclosed. Over the single crystal semiconductor thin film, there are formed switching elements of transistors, pixel electrodes connected electrically with the switching elements, and drive circuits for scanning and driving the switching elements. Also disclosed is a miniature highly dense light valve device. In this light valve device, an electrooptical substance is arranged between a multi-layer substrate. The multi-layer substrate is formed with electrodes and a shielding film at the opposed side of the insulating film to the side formed with the grouped elements through the insulating film. A transparent opposite substrate is also formed so that the optical transparency of the electrooptical substance is controlled by the switching elements.
摘要:
In a magnetic tape wind-up system for winding up a magnetic tape into a roll shape around a wind-up core, a feed direction of the magnetic tape to a tape roll, which is formed by winding up of a preceding portion of the magnetic tape, is controlled by a position control roller before the magnetic tape arrives at the tape roll. The position of the magnetic tape in the tape width direction is controlled by an edge control roller at a position where the magnetic tape arrives at the tape roll. Air between turns of the magnetic tape in the tape roll is discharged by pushing the magnetic tape against the tape roll by use of a push roller while the magnetic tape is present at the outermost circumference of the tape roll.
摘要:
Insulated-gate-field-effect transistors are disposed on an insulating substrate as a matrix. Each gate electrode of the transistors is covered with each gate insulating film and semiconductor film acting as a channel of the transistors, respectively.
摘要:
An object of the present invention is to provide an improved structure of highly fine bight valve device. On a quartz glass substrate 1 and a monocrystalline silicon thin film layer z bonded on the quartz glass substrate 2, are provided an X diving circuit 6 and a Y driving circuit 8 integrated by a very large scale integration process, driving electrodes 5 of a matrix type for conduction signals outputted from the X driving circuit 6 and the Y driving circuit 8, a transistor 9 and a display pixel electrode 10 arranged at a cross-section of the driving electrodes 5 of a matrix type, a control circuit 4 for supplying timing signals to the X driving circuit 6 and the Y driving circuit 8, and a display data generating circuit 3 for generating display data in order to display an image, and further a light source element driving circuit 19 for driving a light source element is provided thereon. A liquid crystal layer 16 is sealed in a gap between the first transparent substrate and the second transparent substrate with a sealing agent 15. The sealing agent 15 is composed of, for example, an adhesive resin which is stiffened by ultraviolet irradiation, and is supplied along a predetermined seal region 18. The present invention provides an improved enforced structure of the light valve device having high reliability, convenience to use, a very compact size, high density and high accuracy.
摘要:
A reflective LCD includes first and second substrates facing each other, a liquid crystal layer disposed between the upper and lower substrates, a high transmissive polarizer attached on an outer surface of the first substrate, and an optical system disposed on the high transmissive polarizer. The high transmissive polarizer allows a part of incident light to pass and reflecting the rest of the incident light. The optical system returns the reflected light to the high transmissive polarizer after changing an advancing direction of the reflected light to a polarizing direction such that the reflected light can be transmitted through the high transmissive polarizer.
摘要:
A semiconductor substrate is utilized to integrally form a drive circuit and a pixel array to produce a transparent semiconductor device for a light valve. The semiconductor device for a light valve is constructed of a semiconductor substrate composed of a bulk single crystal silicon having an opaque thick portion and a thin transparent portion. A pixel array is formed in the transparent portion. A drive circuit is formed in a top face of the opaque portion. A transparent support substrate is laminated to the top face of the semiconductor substrate for reinforcement. A bulk portion of the semiconductor substrate is removed from a back face thereof by selective etching to provide the transparent portion.