摘要:
A diode-integrated thyristor comprising a region having a function of a thyristor and a region having a function of a diode which are integrated in the same semiconductor substrate and whose rectifying directions are opposite to each other, the carriers in the region having the function of a diode having a longer life time than the carriers in the region having the function of a thyristor.
摘要:
A thyristor with a gate electrode formed on the side of an anode electrode. An auxiliary region of a large lateral resistance is formed in a surface layer of the substrate between the anode and gate electrodes.
摘要:
A light-activated semiconductor-controlled rectifier device comprising four layers of PNPN is disclosed in which a part of the edges of the PN junction formed between the intermediate P-type layer and the intermediate N-type layer is exposed on the same side on which the outer P-type layer is exposed, so that a photo-trigger signal is radiated on that exposed part of the edges of the PN junction.
摘要:
A bidirectional photothyristor device comprises a semiconductive substrate including an NPNPN quintuple layer in which projections of both the outer layers Ns in the stacking direction are not overlapped so as to define two quadruple layer regions each having either one of the outer layers Ns as an end layer, a pair of main electrodes connecting the two quadruple layer regions in parallel relationship, a recess formed between the two quadruple layer regions within the semiconductive substrate and to which two intermediate P-N junctions are exposed, and means for applying a light trigger signal to the recess.
摘要:
This invention has a cell incorporating a built-in Schottky diode region disposed in at least part of an elementary cell that constitutes an SiC vertical MOSFET provided in a low-density p-type deposit film with a channel region and a base region inverted to an n-type by ion implantation. This built-in Schottky diode region has built therein a Schottky diode of low on-resistance that is formed of a second deficient pan disposed in a high-density gate layer, a second n-type base layer penetrating a low-density p-type deposit layer formed thereon, reaching an n-type drift layer of the second deficient part and attaining its own formation in consequence of inversion of the p-type deposit layer into an n-type by the ion implantation of an n-type impurity from the surface, and a source electrode connected in the manner of forming a Schottky barrier to the surface-exposed part of the second n-type base layer.
摘要:
The object is to provide a method for the fabrication of a semiconductor device having undergone an anneal treatment for the purpose of forming such ohmic contact as enables decrease of ohmic contact resistance and being provided on the (000-1) plane of silicon carbide with an insulating film and provide the semiconductor device. The method for the fabrication of a silicon carbide semiconductor device includes the steps of performing thermal oxidation on the (000-1) plane of a silicon carbide semiconductor in a gas containing at least oxygen and moisture, thereby forming an insulating film in such a manner as to contact the (000-1) plane of the silicon carbide semiconductor, removing part of the insulating film, thereby forming an opening part therein, depositing contact metal on at least part of the opening part, and performing a heat treatment, thereby forming a reaction layer of the contact metal and silicon carbide, wherein the heat treatment is implemented in a mixed gas of an inert gas and hydrogen.
摘要:
A semiconductor device and a method of manufacturing the device using a (000-1)-faced silicon carbide substrate are provided. A SiC semiconductor device having a high blocking voltage and high channel mobility is manufactured by optimizing the heat-treatment method used following the gate oxidation. The method of manufacturing a semiconductor device includes the steps of forming a gate insulation layer on a semiconductor region formed of silicon carbide having a (000-1) face orientation, forming a gate electrode on the gate insulation layer, forming an electrode on the semiconductor region, cleaning the semiconductor region surface. The gate insulation layer is formed in an atmosphere containing 1% or more H2O (water) vapor at a temperature of from 800° C. to 1150° C. to reduce the interface trap density of the interface between the gate insulation layer and the semiconductor region.
摘要:
A silicon carbide vertical MOSFET having low ON-resistance and high blocking voltage. A first deposition film of low concentration silicon carbide of a first conductivity type is formed on the surface of a high concentration silicon carbide substrate of a first conductivity type. Formed on the first deposition film is a second deposition film that includes a high concentration gate region of a second conductivity type, with a first region removed selectively. A third deposition film is formed on the second deposition film, which includes a second region that is wider than the selectively removed first region, a high concentration source region of a first conductivity type, and a low concentration gate region of a second conductivity type. A low concentration base region of a first conductivity type is formed in contact with the first deposition film in the first and second regions.
摘要:
In a silicon carbide static induction transistor, at a surface part of a semiconductor substrate, a p-type gate region is formed partially overlapping a n-type source region, whereby the high accuracy in alignment between the gate region and the source region is not required, and the gate withstand voltage can be highly increased since the substrate is made of silicon carbide, which improves the yield of static induction transistors.
摘要:
In accordance with the present invention, a plurality of strip-shaped emitter layers on the cathode side are radially arranged on one main surface of the semiconductor substrate while forming a plurality of rings. A gate electrode is in ohmic contact with a part of a base layer which surrounds and is adjacent to each of said emitter layers on the cathode side. Between rings formed by said emitter layers on the cathode side, a ring-shaped gate collecting electrode is provided to be connected to said gate electrode. The gate collecting electrode is provided at a position to balance the potential differences produced by gate currents respectively corresponding to inside and outside of said gate collecting electrode.