摘要:
A silicon carbide vertical MOSFET having low ON-resistance and high blocking voltage. A first deposition film of low concentration silicon carbide of a first conductivity type is formed on the surface of a high concentration silicon carbide substrate of a first conductivity type. Formed on the first deposition film is a second deposition film that includes a high concentration gate region of a second conductivity type, with a first region removed selectively. A third deposition film is formed on the second deposition film, which includes a second region that is wider than the selectively removed first region, a high concentration source region of a first conductivity type, and a low concentration gate region of a second conductivity type. A low concentration base region of a first conductivity type is formed in contact with the first deposition film in the first and second regions.
摘要:
A silicon carbide vertical MOSFET having low ON-resistance and high blocking voltage. A first deposition film of low concentration silicon carbide of a first conductivity type is formed on the surface of a high concentration silicon carbide substrate of a first conductivity type. Formed on the first deposition film is a second deposition film that includes a high concentration gate region of a second conductivity type, with a first region removed selectively. A third deposition film is formed on the second deposition film, which includes a second region that is wider than the selectively removed first region, a high concentration source region of a first conductivity type, and a low concentration gate region of a second conductivity type. A low concentration base region of a first conductivity type is formed in contact with the first deposition film in the first and second regions.
摘要:
In a semiconductor device using a silicon carbide substrate (1), the object of the present invention is to provide a method of manufacturing a semiconductor device that is a buried channel region type transistor having hot-carrier resistance, high punch-through resistance and high channel mobility. This is achieved by using a method of manufacturing a buried channel type transistor using a P-type silicon carbide substrate that includes a step of forming a buried channel region, a source region and a drain region, a step of forming a gate insulation layer after the step of forming the buried channel region, source region and drain region, and a step of exposing the gate insulation layer to an atmosphere containing water vapor at a temperature of 500° C. or more after the step of forming the gate insulation layer. The gate insulation layer is formed by a thermal oxidation method using dry oxygen.
摘要:
An MIS transistor that uses a silicon carbide substrate has a buried channel structure. The surface orientation of the silicon carbide substrate is optimized so that the device does not assume a normally on state, has good hot-carrier endurance and punch-through endurance, and high channel mobility. In particular, a P-type silicon carbide semiconductor substrate is used to form a buried channel region. To achieve high mobility, the depth at which the buried channel region is formed is optimized, and the ratio between buried channel region junction depth (Lbc) source and drain region junction depth (Xj) is made to be within 0.2 to 1.0. The device can be formed on any surface of a hexagonal or rhombohedral or a (110) surface of a cubic system silicon carbide crystal, and provides a particularly good effect when formed on the (11-20) surface.
摘要:
The present invention is directed to an MIS type semiconductor device, including a channel layer between a semiconductor body region and a gate insulating film, the channel layer having an opposite semiconductor polarity to that of the semiconductor body region. Since Vfb of the semiconductor device is equivalent to or less than a gate rated voltage Vgcc− of the semiconductor device with respect to an OFF-polarity, density of carrier charge that is induced near the surface of the semiconductor body region is kept at a predetermined amount or less with a guaranteed range of operation of the semiconductor device.
摘要:
A semiconductor device of the present invention has a semiconductor element region 17 that is provided in part of a silicon carbide layer 3 and a guard-ring region 18 that is provided in another part of the silicon carbide layer 3 surrounding the semiconductor element region 17 when seen in a direction perpendicular to a principal surface of the silicon carbide layer 3. The semiconductor device includes: an interlayer insulation film 10 which is provided on the principal surface of the silicon carbide layer 3 in the semiconductor element region 17 and the guard-ring region 18, the interlayer insulation film 10 having a relative dielectric constant of 20 or more; a first protective insulation film 14 provided on the interlayer insulation film in the guard-ring region 18; and a second protective insulation film 15 provided on the first protective insulation film 14, wherein the first protective insulation film 14 has a linear expansion coefficient which is between a linear expansion coefficient of a material of the second protective insulation film 15 and a linear expansion coefficient of a material of the interlayer insulation film 10.
摘要:
When a primary computer is taken over to a secondary computer in a redundancy configuration computer system where booting is performed via a storage area network (SAN), a management server delivers an information collecting/setting program to the secondary computer before the user's operating system of the secondary computer is started. This program assigns a unique ID (World Wide Name), assigned to the fiber channel port of the primary computer, to the fiber channel port of the secondary computer to allow a software image to be taken over from the primary computer to the secondary computer.
摘要:
A semiconductor element 100 including an MISFET according to the present invention is characterized by having diode characteristics in a reverse direction through an epitaxial channel layer 50. The semiconductor element 100 includes a semiconductor layer 20 of a first conductivity type, a body region 30 of a second conductivity type, source and drain regions 40 and 75 of the first conductivity type, an epitaxial channel layer 50 in contact with the body region, source and drain electrodes 45 and 70, a gate insulating film 60, and a gate electrode 65. If the voltage applied to the gate electrode of the MISFET is smaller than a threshold voltage, the semiconductor element 100 functions as a diode in which current flows from the source electrode 45 to the drain electrode 70 through the epitaxial channel layer 50. The absolute value of the turn-on voltage of this diode is smaller than that of the turn-on voltage of a body diode that is formed of the body region and the first silicon carbide semiconductor layer.
摘要:
An information service providing method for providing an information service is provided, wherein the method includes the steps of: receiving a customer's request for the information service to be provided with; deciding the customer's utilization qualification with respect to the contents of the information service; determining the contents that is available to the customer according to the customer's utilization qualification among the contents of the information service that the customer requests to be provided with; and providing the customer with the determined contents of the information service.
摘要:
A rotation speed detecting apparatus, including: an annular fixing member to be fixed to a support member configured to rotatably support a rotating object to be detected; a case mounted to the fixing member; a detecting portion abutting against an abutment portion provided in the case so as to be positioned with respect to the case for detecting a rotation speed of the rotating object to be detected; and a resin mold portion formed by resin molding and configured to fix the detecting portion to the case in a state in which the detecting portion abuts against the abutment portion of the case.