摘要:
A process for creating a DRAM array having feature widths that transcend the resolution limit of the employed photolithographic process using only five photomasking steps. The process involves the following steps: creation of a half-pitch hard-material mask that is used to etch a series of equidistanty-spaced isolation trenches in a silicon substrate; filling the isolation trenches with insulative material; creation of a hard-material mask consisting of strips that are 1-1/2F in width, separated by spaces that are 1/2F in width, that is used to etch a matrix of storage trenches; angled implantation of a N-type impurity in the storage trench walls; another anisotropic etch to deepen the storage trenches; deposition of a capacitor dielectric layer; deposition of a protective polysilicon layer on top of the dielectric layer; removal of the dielectric layer and the protective polysilicon layer at the bottom of each storage trench with a further anisotropic etch; filling the storage trenches with in-situ-doped polysilicon; planarization down to the substrate level; creation of an access gate on opposite sides of each storage trench, in addition to wordlines which interconnect gates within array columns by anisotropically etching a conformal conductive layer that has been deposited on top of oxide-silicon mesas that run perpendicular to the isolation trenches and are centered between the rows of storage trenches, the oxide-silicon mesas having been created with an etch using a photoresist mask consisting of a series of parallel strips that have been laid down with minimum feature and space width, then plasma etched to 3/4F; creation of source and drains with an N-type implant; and anisotropically etching the metal layer to create bitlines along the sidewalls of the oxide mesas.
摘要:
A stacked v-cell (SVC) capacitor using a modified stacked capacitor storage cell fabrication process. The SVC capacitor is made up of a polysilicon structure, having a v-shaped cross-section, located at a buried contact and extending to an adjacent storage node overlaid by polysilicon with a dielectric sandwiched in between. The addition of the polysilicon structure increases storage capability 70% without enlarging the surface area defined for a normal stacked capacitor cell.
摘要:
The present invention utilizes a wet or vapor isotropic etchback process of carefully controlled duration to create a field-effect transistor having reduced-slope, staircase-profile sidewall spacers formed from a pair of TEOS oxide layers. The spacer's reduced sidewall slope and staircase profile facilitates digit line deposition and aids in reducing the existence of short-prone polysilicon stringers.
摘要:
A stacked v-cell (SVC) capacitor using a modified stacked capacitor storage cell fabrication process. The SVC capacitor is made up of polysilicon structure, having a v-shaped cross-section, located at a buried contact and extending to an adjacent storage node overlaid by polysilicon with a dielectric sandwiched in between. The addition of the polysilicon structure increases storage capability 70% without enlarging the surface area defined for a normal stacked capacitor cell.
摘要:
A stacked multi fingered cell (SMFC) capacitor using a modified stacked capacitor storage cell fabrication process. The SMFC is made up of polysilicon structure, having a multi-fingered cross-section, located at a buried contact and extending to an adjacent storage node overlaid by polysilicon with a dielectric sandwiched in between. The addition of the polysilicon structure increases storage capability 120% without enlarging the surface area defined for a normal stacked capacitor cell.
摘要:
A stacked v-cell (SVC) capacitor using a modified stacked capacitor storage cell fabrication process. The SVC capacitor is made up of polysilicon structure, having a v-shaped cross-section, located at a buried contact and extending to an adjacent storage node overlaid by polysilicon with a dielectric sandwiched in between. The addition of the polysilicon structure increases storage capability 70% without enlarging the surface area defined for a normal stacked capacitor cell.
摘要:
A stacked multi-fingered cell (SMFC) capacitor using a modified stacked capacitor storage cell fabrication process. The (SMFC) is made up of polysilicon structure, having a multi-fingered cross-section, located at a buried contact and extending to an adjacent storage node overlaid by polysilicon with a dielectric sandwiched in between. The addition of the polysilicon structure increases storage capability 120% without enlarging the surface area defined for a normal stacked capacitor cell.
摘要:
A DRAM fabrication process is disclosed for constructing a reduced resistance digit-line. The digit-line is so constructed as to maintain low resistance as it crosses the gaps between word-lines. By bridging gaps having a dimension less than or falling below a calculated critical gap spacing, and following the contours of gaps having a dimension greater or falling above that critical gap dimension, the digit-line resistance can be minimized.
摘要:
A stacked comb spacer capacitor (SCSC) using a modified stacked capacitor storage cell fabrication process. The SCSC is made up of polysilicon structure, having a spiked v-shaped (or comb-shaped) cross-section, located at a buried contact and extending to an adjacent storage node overlaid by polysilicon with a dielectric sandwiched in between. The creation of the spiked polysilicon structure increases storage capability 50% without enlarging the surface area defined for a normal buried digit line stacked capacitor cell. Removing the dielectric residing under the backside of the storage node cell plate and filling that area with polysilicon increases storage capacity by an additional 50% or more.
摘要:
A method of fabricating a semiconductor wafer comprises providing an electrically conductive area on a semiconductor wafer. Multiple alternating layers of first and second materials are provided atop the wafer. The first and second materials need be selectively etchable relative to one another. The multiple layers are etched and the electrically conductive area upwardly exposed to define exposed edges of the multiple layers projecting upwardly from the electrically conductive area. One of the first or second materials is selectively isotropically etched relative to the other to produce indentations which extend generally laterally into the exposed edges of the multiple layers. A layer of electrically conductive material is applied atop the wafer and electrically conductive area, and fills the exposed edge indentations. The electrically conductive material is etched to leave conductive material extending upwardly from the electrically conductive area adjacent the multiple layer edges and within the indentations. The multiple layers are etched from the wafer to leave upwardly projecting conductive material having lateral projections extending therefrom. Such material is used to form the lower plate of a capacitor.