Abstract:
A semiconductor device and a method of forming the same, the semiconductor device includes a first transistor and a second transistor. The first transistor is disposed on a substrate and comprises a gate electrode, a gate dielectric layer and a first source/drain. The second transistor includes the gate electrode and a channel layer disposed on the gate electrode.
Abstract:
A static random access memory unit structure and layout structure includes two pull-up transistors, two pull-down transistors, two slot contact plugs, and two metal-zero interconnects. Each metal-zero interconnect is disposed on each slot contact plug and a gate of each pull-up transistor, in which, each slot contact plug crosses a drain of each pull-down transistor and a drain of each pull-up transistor and extends to cross an end of each metal-zero interconnect. A gap between the slot contact plugs is smaller than a gap between the metal-zero interconnects.
Abstract:
A silicon-oxide-nitride-oxide-silicon (SONOS) device is disclosed. The SONOS device includes a substrate; a first oxide layer on the substrate; a silicon-rich trapping layer on the first oxide layer; a nitrogen-containing layer on the silicon-rich trapping layer; a silicon-rich oxide layer on the nitrogen-containing layer; and a polysilicon layer on the silicon-rich oxide layer.
Abstract:
Provided is a semiconductor device including a P-type substrate, a P-type first well region, an N-type second well region, a gate, N-type source and drain regions, a dummy gate and an N-type deep well region. The first well region is in the substrate. The second well region is in the substrate proximate to the first well region. The gate is on the substrate and covers a portion of the first well region and a portion of the second well region. The source region is in the first well region at one side of the gate. The drain region is in the second well region at another side of the gate. The dummy gate is on the substrate between the gate and the drain region. The deep well region is in the substrate and surrounds the first and second well regions. An operation method of the semiconductor device is further provided.
Abstract:
A method of forming a nanowire includes providing a substrate. The substrate is etched to form at least one fin. Subsequently, a first epitaxial layer is formed on an upper portion of the fin. Later, an undercut is formed on a middle portion the fin. A second epitaxial layer is formed to fill into the undercut. Finally, the fin, the first epitaxial layer and the second epitaxial layer are oxidized to condense the first epitaxial layer and the second epitaxial layer into a germanium-containing nanowire.
Abstract:
A method of forming a nanowire includes providing a substrate. The substrate is etched to form at least one fin. Subsequently, a first epitaxial layer is formed on an upper portion of the fin. Later, an undercut is formed on a middle portion the fin. A second epitaxial layer is formed to fill into the undercut. Finally, the fin, the first epitaxial layer and the second epitaxial layer are oxidized to condense the first epitaxial layer and the second epitaxial layer into a germanium-containing nanowire.
Abstract:
A silicon-oxide-nitride-oxide-silicon (SONOS) device is disclosed. The SONOS device includes a substrate; a first oxide layer on the substrate; a silicon-rich trapping layer on the first oxide layer; a nitrogen-containing layer on the silicon-rich trapping layer; a silicon-rich oxide layer on the nitrogen-containing layer; and a polysilicon layer on the silicon-rich oxide layer.
Abstract:
The present invention provides an integrated circuit with a standard cell of an inverter standard cell. The integrated circuit includes: a first metal line and a second metal line stretching along a first direction; a first dummy gate and a second dummy gate stretching along a second direction; Plural fin structures stretching along the first direction; A gate structure disposed on the fin structures and stretching along the second direction; Two long contact plugs disposed at one side of the gate structure; two short contact plugs disposed at the other side of the gate structure; a gate contact plug disposed on the gate structure; Plural via plugs disposed on the long contact plugs, the short contact plugs and the gate contact plugs; A metal layer includes the first metal line, the second metal line, a third metal line and a fourth metal line.
Abstract:
The present invention provides an integrated circuit with a standard cell of an inverter. The integrated circuit includes: a first metal line and a second metal line stretching along a first direction; a first dummy gate and a second dummy gate stretching along a second direction; Plural fin structures stretching along the first direction; A gate structure disposed on the fin structures and stretching along the second direction; Two long contact plugs disposed at one side of the gate structure; two short contact plugs disposed at the other side of the gate structure; a gate contact plug disposed on the gate structure; Plural via plugs disposed on the long contact plugs, the short contact plugs and the gate contact plugs; A metal layer includes the first metal line, the second metal line, a third metal line and a fourth metal line.
Abstract:
A static random access memory unit structure and layout structure includes two pull-up transistors, two pull-down transistors, two slot contact plugs, and two metal-zero interconnects. Each metal-zero interconnect is disposed on each slot contact plug and a gate of each pull-up transistor, in which, each slot contact plug crosses a drain of each pull-down transistor and a drain of each pull-up transistor and extends to cross an end of each metal-zero interconnect. A gap between the slot contact plugs is smaller than a gap between the metal-zero interconnects.