Abstract:
An article comprising a turbine component formed of a nickel-chromium (Ni—Cr) alloy including from 2 to 50 wt % chromium balanced by nickel is disclosed. The Ni—Cr alloy is thicker than at least 125 μm to make a self-supporting turbine component, and the turbine component includes a rotor blade, a stator, or a vane. The Ni—Cr alloy is electroformed on a mandrel by providing an external supply of current to an anode and a cathode in a plating bath containing a solvent, a surfactant, and an ionic liquid including choline chloride, nickel chloride, and chromium chloride.
Abstract:
A coated metal component includes an aluminum alloy substrate and a protective aluminum coating on a substrate. An interfacial boundary layer between the coating and substrate enhances coating adhesion. The boundary layer includes isolated regions of copper or tin produced by a double zincating process. The protective aluminum coating exhibits improved adhesion and is formed by electrodeposition in an ionic liquid.
Abstract:
Disclosed herein is a method of coating, comprising providing an article having an internal passage therein to be coated; electrolytically applying a first layer that comprises chromium or a chromium alloy onto a surface of the internal passage; electrolytically applying a second layer comprising aluminum or an aluminum alloy onto the first layer; and heat treating the article to promote interdiffusion between the first layer and the second layer.
Abstract:
A metal article comprises an alloy substrate having a surface and a non-diffused metal monolayer disposed thereon. The surface has a first surface work function value Φs. The non-diffused monolayer deposited on the surface has a second surface work function value Φs that is less negative than the first surface work function value. A method for depositing the monolayer via underpotential deposition (UPD) is also disclosed.
Abstract:
Disclosed herein is a method of coating, comprising providing an article having an internal passage therein to be coated; electrolytically applying a first layer that comprises chromium or a chromium alloy onto a surface of the internal passage; electrolytically applying a second layer comprising aluminum or an aluminum alloy onto the first layer; and heat treating the article to promote interdiffusion between the first layer and the second layer.
Abstract:
A metal article comprises an alloy substrate having a surface and a non-diffused metal monolayer disposed thereon. The surface has a first surface work function value Φs. The non-diffused monolayer deposited on the surface has a second surface work function value Φs that is less negative than the first surface work function value. A method for depositing the monolayer via underpotential deposition (UPD) is also disclosed.
Abstract:
A coating system for an aluminum component includes a substrate formed from an aluminum material, a zinc or zinc alloy sacrificial layer deposited on the substrate, and an aluminum coating deposited over the zinc or zinc alloy sacrificial layer.
Abstract:
A method of applying a protective coating with improved adhesion on an aluminum alloy component includes first pretreating the surface of a component by depositing a sacrificial protective immersion layer using a zincating or similar process. Portions of the protective immersion layer as well as portions of the underlying aluminum alloy substrate are then electrolytically etched off in an ionic liquid. A protective aluminum coating is then electrodeposited on the component in an ionic liquid
Abstract:
An electroplating apparatus includes a container containing plural portions and an ionic liquid plating solution that is capable of flowing therebetween. The plural portions include at least a first portion containing a counter electrode that includes coating donor material and a second portion that includes a workpiece. A porous scrubber separating the first and second portions has a plurality of metallic outer surfaces in contact with the ionic liquid plating solution. Coating, repair, and regeneration methods using an ionic liquid plating solution are also described.
Abstract:
Various implementations described herein are directed to a method of performing a land seismic survey operation. The method may include receiving a first information from a central recording system by a computer system on a seismic truck. The first information describes time and locations of seismic shots being performed in the seismic survey operation. The method may include using a set of rules and the first information to determine a start time for a seismic shot at a next shot location. The method may also include transmitting a second information that describes the next shot location and the start time to the central recording system.