Abstract:
Semiconductor packages and methods for forming a semiconductor package are disclosed. The method includes providing a wafer having first and second major surfaces. The wafer is prepared with a plurality of dies and a plurality of external electrical contacts disposed on the first major surface of the wafer. The method includes processing the wafer. Processing the wafer includes separating the wafer into a plurality of individual dies. An individual die includes first and second major surfaces and first and second sidewalls, and the external electrical contacts are formed on the first major surface of the die. An encapsulant material is formed. The encapsulant material covers at least a portion of the first and second sidewalls of the die.
Abstract:
Semiconductor packages and methods for forming a semiconductor package are disclosed. The method includes providing a wafer having first and second major surfaces. The wafer is prepared with a plurality of dies and a plurality of external electrical contacts disposed on the first major surface of the wafer. The method includes processing the wafer. Processing the wafer includes separating the wafer into a plurality of individual dies. An individual die includes first and second major surfaces and first and second sidewalls, and the external electrical contacts are formed on the first major surface of the die. An encapsulant material is formed. The encapsulant material covers at least a portion of the first and second sidewalls of the die.
Abstract:
A first carrier has a first plate. A tape is disposed on the first plate. A second plate is disposed over the first plate. The second plate has a trench aligned to the tape and an opening formed through the second plate over the tape. A singulated semiconductor package is disposed on the tape in the opening of the second plate. A second carrier has a static datum and a movable datum. The movable datum is moved toward the static datum. An aperture substrate is disposed around the static datum and movable datum. A manufacturing process is performed on the aperture substrate.
Abstract:
Semiconductor packages having an electromagnetic interference (EMI) shielding layer and methods for forming the same are disclosed. The method includes providing a base carrier defined with an active region and a non-active region. A fan-out redistribution structure is formed over the base carrier. A die having elongated die contacts are provided. The die contacts corresponding to conductive pillars. The die contacts are in electrical communication with the fan-out redistribution structure. An encapsulant having a first major surface and a second major surface opposite to the first major surface is formed. The encapsulant surrounds the die contacts and sidewalls of the die. An electromagnetic interference (EMI) shielding layer is formed to line the first major surface and sides of the encapsulant. An etch process is performed after forming the EMI shielding layer to completely remove the base carrier and singulate the semiconductor package.
Abstract:
Semiconductor packages and methods for forming a semiconductor package are disclosed. The method includes providing a wafer having first and second major surfaces. The wafer is prepared with a plurality of dies and a plurality of external electrical contacts disposed on the first major surface of the wafer. The method includes processing the wafer. Processing the wafer includes separating the wafer into a plurality of individual dies. An individual die includes first and second major surfaces and first and second sidewalls, and the external electrical contacts are formed on the first major surface of the die. An encapsulant material is formed. The encapsulant material covers at least a portion of the first and second sidewalls of the die.
Abstract:
The present disclosure is directed to improving EMI shielding to provide more reliable semiconductor packages. The semiconductor package may be, for example, a lead frame including one or multiple dies attached thereto. The semiconductor package may include only wire bonds or a combination of clip bonds and wire bonds. An integrated shielding structure may be disposed in between the package substrate and the encapsulant to shield internal and/or external EMI. For example, a top surface of the integrated shield structure is exposed.
Abstract:
An embodiment related to a stacked package is disclosed. The stacked package includes a conductive gang with gang legs electrically coupling a second component stacked over a first die to a package substrate. The first die is mounted over a die attach region of the package substrate and electrically coupled to the package substrate.
Abstract:
Embodiments of the present invention are directed to a semiconductor package with improved thermal performance. The semiconductor package includes a package substrate comprising a top substrate surface and a bottom substrate surface. The package substrate comprises a thickness extending from the top substrate surface to the bottom substrate surface. A heat spreader is disposed on the top substrate surface. The heat spreader comprises a thickness extending from a top planar surface to a bottom planar surface of the heat spreader. The top planar surface of the heat spreader is defined with a die region and a non-die region surrounding the die region. A semiconductor die is directly disposed on the top planar surface of the heat spreader in the die region. The thickness of the heat spreader is greater relative to the thickness of the package substrate.
Abstract:
Device and method of forming the device are disclosed. A device includes a buildup package substrate with top and bottom surfaces and a plurality of interlevel dielectric (ILD) layers with interconnect structures printed layer by layer and includes a die region and a non-die region on the top surface. A semiconductor die is disposed in the die and non-die regions of the package substrate and is electrically connected to the plurality of interconnect structures via a plurality of wire bonds. A plurality of conductive elements are disposed on the bottom surface of the package substrate and a dielectric layer encapsulates the semiconductor die, the wire bonds and the top surface of the buildup package substrate.