Abstract:
Provided are methods of fabricating photodetectors based on heterostructures comprising graphene and mercury chalcogenide, e.g., HgTe, quantum dots. Embodiments of the methods are able to provide photodetectors that can detect MWIR light, e.g., greater than 3 mm at room temperature with responsivities R* of at least 104 A/W and detectivities D* of at least 1011 Jones. Thus, the present photodetectors outperform existing MWIR photodetectors without the need for cooling. The photodetectors themselves are also encompassed.
Abstract:
An optoelectronic device comprises a nanocomposite comprising a carbon nanostructure having a surface and a biomolecule adsorbed on the surface and forming a heterojunction at the interface of the carbon nanostructure and the biomolecule, the carbon nanostructure and the biomolecule each characterized by respective conduction band edges and valence band edges. The device further comprises first and second electrodes in electrical communication with the nanocomposite. The conduction band edge offset, the valence band edge offset, or both, across the heterojunction is greater in energy than the binding energy of an exciton generated in the carbon nanostructure or the biomolecule upon the absorption of light such that the exciton dissociates at the heterojunction to an electron, which is injected into one of the carbon nanostructure and the biomolecule, and a hole, which is injected into the other of the carbon nanostructure and the biomolecule.
Abstract:
Plasmonic substrates are provided which may be used in a variety of optoelectronic devices, e.g., biosensors and photodetectors. The plasmonic substrate may comprise a layer of graphene and a plurality of discrete, individual transition metal chalcogenide nanodomes distributed on a surface of the layer of graphene, each nanodome surrounded by bare graphene. Methods for making and using the plasmonic substrates are also provided.
Abstract:
Plasmonic substrates are provided which may be used in a variety of optoelectronic devices, e.g., biosensors and photodetectors. The plasmonic substrate may comprise a layer of graphene and a plurality of discrete, individual transition metal chalcogenide nanodomes distributed on a surface of the layer of graphene, each nanodome surrounded by bare graphene. Methods for making and using the plasmonic substrates are also provided.
Abstract:
Methods for forming tunnel barrier layers are provided, including a method comprising exposing a surface of a material, the surface free of oxygen, to an initial water pulse for a pulse time and at a pulse temperature, the pulse time and pulse temperature selected to maximize hydroxylation of the surface; and exposing the hydroxylated surface to alternating, separated pulses of precursors under conditions to induce reactions between the hydroxylated surface and the precursors to form a tunnel barrier layer on the surface of the material via atomic layer deposition (ALD), the tunnel barrier layer having an average thickness of no more than 1 nm and being formed without an intervening interfacial layer between the tunnel barrier layer and the surface of the material.
Abstract:
Disclosed are ultrathin layers of group II-VI semiconductors, group II-VI semiconductor superlattice structures, photovoltaic devices incorporating the layers and superlattice structures and related methods. The superlattice structures comprise an ultrathin layer of a first group II-VI semiconductor alternating with an ultrathin layer of at least one additional semiconductor, e.g., a second group II-VI semiconductor, or a group IV semiconductor, or a group III-V semiconductor.
Abstract:
Memristors are provided, which, in embodiments, comprise a bottom electrode; a top electrode in electrical communication with the bottom electrode, wherein one or both of the bottom and top electrodes is a Schottky electrode; and a dielectric stack between the bottom and top electrodes, the dielectric stack forming a top interface with a bottom surface of the top electrode and a bottom interface with a top surface of the bottom electrode, the dielectric stack comprising a plurality of atomic layer deposition (ALD)-grown atomic sublayers, the plurality comprising an ALD-grown atomic sublayer of a first metal oxide and an ALD-grown atomic sublayer of a second metal oxide. The second metal oxide is different from the first metal oxide and has a greater concentration of oxygen vacancies (VO) than the first metal oxide. The dielectric stack has a thickness of no more than about 5 nm.
Abstract:
Methods for forming tunnel barrier layers are provided, including a method comprising exposing a surface of a material, the surface free of oxygen, to an initial water pulse for a pulse time and at a pulse temperature, the pulse time and pulse temperature selected to maximize hydroxylation of the surface; and exposing the hydroxylated surface to alternating, separated pulses of precursors under conditions to induce reactions between the hydroxylated surface and the precursors to form a tunnel barrier layer on the surface of the material via atomic layer deposition (ALD), the tunnel barrier layer having an average thickness of no more than 1 nm and being formed without an intervening interfacial layer between the tunnel barrier layer and the surface of the material.
Abstract:
A neuromorphic computing circuit includes a plurality of memristors that function as synapses. The neuromorphic computing circuit also includes a superconducting quantum interference device (SQUID) coupled to the plurality of memristors. The SQUID functions as a neuron such that the plurality of memristors and the SQUID form a neural unit of the neuromorphic computing circuit.
Abstract:
A method of making a plasmonic metal/graphene heterostructure comprises heating an organometallic complex precursor comprising a metal at a first temperature T1 for a first period of time t1 to deposit a layer of the metal on a surface of a heated substrate, the heated substrate in fluid communication with the precursor; and heating, in situ, the precursor at a second temperature T2 for a second period of time t2 to simultaneously form on the layer of the metal, a monolayer of graphene and a plurality of carbon-encapsulated metal nanostructures comprising the metal, thereby providing the plasmonic metal/graphene heterostructure. The heated substrate is characterized by a third temperature T3. The plasmonic metal/graphene heterostructures, devices incorporating the heterostructures, and methods of using the heterostructures are also provided.