Abstract:
A method of metallization using a tungsten plug is described. A contact hole is opened to the semiconductor substrate through an insulating layer covering semiconductor structures in and on the semiconductor substrate. A glue layer is deposited conformally over the surface of the insulating layer and within the contact opening. A tungsten plug is formed within the contact opening. The glue layer is removed except for portions of the glue layer underneath the tungsten plug and on the lower sides of the tungsten plug. Ditches are left on the upper sides of the tungsten plug where the glue layer has been removed. The ditches around the tungsten plug are filled with a dielectric material. A second metallization is deposited and patterned. The patterned second metallization does not extend over one side portion of the tungsten plug; that is, there is no dog-bone formation. There is no junction damage through the side portion of the tungsten plug not covered by the second metallization because the dielectric material filling the ditches protects the glue layer from being etched away. In a second embodiment of the invention, after the contact hole is opened, the insulating layer is reflowed forming an overhang around the contact hole. A glue layer is deposited conformally over the surface of the insulating layer and within the contact opening. A tungsten plug is formed within the contact opening.
Abstract:
A new method of fabricating a polycide gate is described. A gate polysilicon layer is provided a gate oxide layer on the surface of a substrate. A thin conducting diffusion barrier is deposited overlying the gate polysilicon layer. A of tungsten silicide is deposited overlying the thin diffusion barrier layer wherein a reaction gas in the deposition contains fluorine atoms and wherein fluorine atoms are incorporated into the tungsten layer. The gate polysilicon, thin conducting barrier, and tungsten silicide layers are patterned form the polycide gate structures. The wafer is annealed complete formation of the polycide gate structures wherein number of fluorine atoms from the tungsten silicide layer into the gate polysilicon layer are minimized by presence of the thin conducting diffusion barrier layer wherein because the diffusion of the fluorine atoms is the thickness of the gate oxide layer does not This prevents the device from degradation such as voltage shift and saturation current descrease.
Abstract:
A new method of fabricating a polycide gate structure is described. A gate polysilicon layer is provided overlying a gate oxide layer on the surface of a semiconductor substrate. A thin conducting diffusion barrier layer is deposited overlying the gate polysilicon layer. A layer of tungsten silicide is deposited overlying the thin conducting diffusion barrier layer wherein a reaction gas used in the deposition contains fluorine atoms and wherein the fluorine atoms are incorporated into the tungsten silicide layer. The gate polysilicon, thin conducting diffusion barrier, and tungsten silicide layers are patterned to form the polycide gate structures. The wafer is annealed to complete formation of the polycide gate structures wherein the number of fluorine atoms from the tungsten silicide layer diffusing into the gate polysilicon layer are minimized by the presence of the thin conducting diffusion barrier layer and wherein because the diffusion of the fluorine atoms is minimized, the thickness of the gate oxide layer does not increase. This prevents the device from degradation such as threshold voltage shift and saturation current decrease.
Abstract:
A new isolation technology fabrication process is provided including the step of forming a trench in a semiconductor material. Then, several poly walls are formed in the trench. The poly walls are oxidized to form a single oxide isolation region filling the trench.
Abstract:
A capacitor structure suitable for use in Dynamic Random Access Memory (DRAM) Integrated Circuit (IC) devices and its method of fabrication is disclosed. The capacitor includes a main or root trench extending vertically into the silicon substrate and at least one buried trench extending horizontally into the side wall of the main trench. The enlarged trench sidewall surface area as a result of the added buried trenches increases the total capacitance of the capacitor and it suitable for use with high density, high data volume memory devices. The buried trenches are formed by implanting oxygen or nitrogen ions into the designated depths of the silicon substrate, subsequently annealing the entire substrate at the absence of gaseous oxygen, and etching away the converted silicon dioxide or silicon nitride. The formed trench system can reduce the accumulation of the structural stress to avoid the formation of crystalline defects and obtain the resulting device with better quality.
Abstract:
A MOS capacitor structure in accordance with the invention is formed by depositing a polysilicon electrode layer on the substrate. Oxide regions are then formed on the polysilicon layer. Using the oxide regions as a mask, pillars are etched in the polysilicon electrode layer.
Abstract:
A method is provided for forming separated spacer structures in a mixed-mode integrated circuit, which can be used to form spacer structures with different widths for the various kinds of devices in the mixed-mode integrated circuit. The method is for use on a semiconductor substrate which is formed with at least a first gate for a first kind of device of the mixed-mode integrated circuit and a second gate for a second kind of device of the integrated circuit, with the second gate being larger in width than the first gate such that the first gate is formed with a first spacer structure on the sidewalls thereof to a first desired width while the second gate is formed with a second spacer structure on the sidewalls thereof to a second desired width larger than the first desired width. The method features a two-step etching process in which the first etching process is performed to form one spacer structure to the first desired width, while the second etching process is performed to form the other spacer structure to the second desired width.
Abstract:
A method is described for forming a dynamic random access memory cell capacitor in which polysilicon word lines are formed in a self-aligned method on top of the gate electrodes of the memory cell wherein the polysilicon word lines act to increase the surface area and hence to increase the capacitance of the capacitor.
Abstract:
A process of fabricating a read only memory device (ROM) wherein the buried N+lines have desirable well defined very narrow widths and are closely spaced. In the process, an insulating layer is deposited on the substrate. Openings for the buried N+lines having vertical sidewalls are formed through the insulating layer. Spacer layers are formed on the vertical sidewalls of the openings. Impurities are implanted through the openings. The insulating layers is removed and the substrate is oxidized to form silicon oxide insulation strips over the buried N+implanted regions. Next, the read only memory (ROM) device is completed by fabricating floating gates and overlying control gates between the buried N+lines interconnected by a conductive lines that are orthogonal to the buried N+buried lines.
Abstract:
An exemplary resetting circuit adapted for regulating a voltage on an output terminal of a shift register is disclosed. The resetting circuit includes a reset driving module and a reset module. The reset driving module is received with an enable signal to output a control voltage signal to an output terminal of the reset driving module. The reset module is electrically coupled to the output terminal of the shift register and the output terminal of the reset circuit driving module, and is controlled by the control voltage signal on the output terminal of the reset driving module to determine whether switching on an electrical path between the output terminal of the shift register and a gate-off voltage level.