摘要:
Methods for forming robust copper structures include steps for providing a substrate with an insulating layer with openings formed therein. At least two barrier layers are then formed followed by the deposition of a copper seed layer which is annealed. Bulk copper deposition of copper and planarization can follow. In one approach the seed layer is implanted with suitable materials forming an implanted seed layer upon which a bulk layer of conductive material is formed and annealed to form a final barrier layer. In another approach, a barrier layer is formed between two seed layers which forms a base for bulk copper deposition. Another method involves forming a first barrier layer and forming a copper seed layer thereon. The seed layer being implanted with a barrier material (e.g. palladium, chromium, tantalum, magnesium, and molybdenum or other suitable materials) and then bulk deposition of copper-containing material is performed followed by annealing.
摘要:
Embodiments of the invention include a method for forming a copper interconnect having a bi-layer copper barrier layer. The method comprises the steps of providing a substrate with a low-K dielectric insulating layer and an opening in the insulating layer. A first barrier layer of tantalum/tantalum nitride is formed on the insulating layer and in the opening. A second barrier layer consisting of a material selected from the group of palladium, chromium, tantalum, magnesium, and molybdenum is formed on the first barrier layer. A copper seed layer is formed on the second barrier layer and implanted with barrier ions and a bulk copper layer is formed on the seed layer. The substrate is annealed and subject to further processing which can include planarization.
摘要:
Embodiments of the invention include a method for forming a copper interconnect having a bi-layer copper barrier layer. The method involves providing a substrate having an insulating layer with an opening therein configured to receive an inlaid conducting structure. A copper seed layer is formed on the insulating layer and in the opening. The seed layer is implanted with barrier material ions to form an implanted seed layer. Upon the implanted seed layer is formed a bulk copper-containing layer. The substrate is then annealed so that barrier material ions migrate through the seed layer to an interface between the seed layer and the insulating layer to form a final barrier layer. The barrier material can include palladium, chromium, tantalum, magnesium, and molybdenum.
摘要:
A method of removing material from an integrated circuit. The integrated circuit is placed within a reaction chamber, and a flow of argon and a flow of hydrogen are introduced into the reaction chamber, where the flow of hydrogen is greater than the flow of argon. The flows of argon and hydrogen are energized to form a plasma, and the material is removed from the integrated circuit by reaction of the material with the energized flows of argon and hydrogen to form gaseous products, which are pumped out of the reaction chamber. The plasma and flows of argon and hydrogen are discontinued when a desired amount of material has been removed, and the integrated circuit is removed from the reaction chamber.
摘要:
A process is described for treating damaged surfaces of a low dielectric constant organo silicon oxide insulation layer of an integrated circuit structure to inhibit absorption of moisture which comprises treating such damaged surfaces of said organo silicon oxide insulation layer with a hydrogen plasma. The treatment with hydrogen plasma causes hydrogen to bond to silicon atoms with dangling bonds in the damaged surface of the organo silicon oxide layer to replace organic material severed from such silicon atoms at the damaged surface, whereby absorption of moisture in the damaged surface of the organo silicon oxide layer, by bonding of such silicon dangling bonds with moisture, is inhibited.
摘要:
An improvement to a method of forming an integrated circuit. An etch stop layer is formed to overlie the front end processing layers of the integrated circuit. Support structures are formed that are disposed so as to support electrically conductive interconnects on various levels of the integrated circuit. Substantially all of the non electrically conductive layers above the etch stop layer that were formed during the fabrication of the interconnects are removed.
摘要:
A method of forming an electrically conductive interconnect on a substrate. An interconnection feature is formed on the substrate, and a first barrier layer is deposited on the substrate. The first barrier layer consists essentially of a diamond film. A seed layer consisting essentially of copper is deposited on the substrate, and a conductive layer consisting essentially of copper is deposited on the substrate. Thus, by using a diamond film as the barrier layer, diffusion of the copper from the conductive layer into the material of the substrate is substantially reduced and preferably eliminated.
摘要:
An improvement to a method of forming an integrated circuit. An etch stop layer is formed to overlie the front end processing layers of the integrated circuit. Support structures are formed that are disposed so as to support electrically conductive interconnects on various levels of the integrated circuit. Substantially all of the non electrically conductive layers above the etch stop layer that were formed during the fabrication of the interconnects are removed.
摘要:
A three step process for planarizing an integrated circuit structure comprising one or more dielectric layers having trench and/or via openings therein lined with a layer of electrically conductive barrier liner material and filled with copper filler material.Sufficient excess copper (formed over the barrier liner portions on the top surface of the dielectric layer) is removed in an initial chemical mechanical polish (CMP) step to provide a planarized copper layer with a global planarity of about 20 nm to about 30 nm. The remainder of the excess copper over the portion of the barrier liner material lying on the top surface of the dielectric layer is then removed by electropolishing the structure, in a second step, until all of the excess copper over the portion of the barrier liner material lying on the top surface of the dielectric layer is removed. In a third step, all remaining portions of the diffusion barrier liner on the upper surface of the low k dielectric layer are then removed using a dry etching process selective to copper and the dielectric layer until all of the portions of the barrier layer over the top surface of the dielectric layer are removed; whereby the integrated circuit structure may be planarized by removal of all of the copper layer and barrier layer from the top surface of the dielectric layer while inhibiting dishing and/or erosion of the surface of copper filler material in the opening, and without risking distortion and/or delamination by the harsh effects of excessive CMP processing.
摘要:
A dual damascene type of structure of vias and trenches formed using layers of low k dielectric material is disclosed, and a process for making same without damage to the low k dielectric material during removal of photoresist masks used respectively in the formation of the pattern of via openings and the pattern of trench openings in the layers of low k dielectric material. Damage to the low k dielectric material is avoided by forming a first layer of low k dielectric material on an integrated circuit structure; forming a first hard mask layer over the first layer of low k dielectric material; forming over the first hard mask layer a first photoresist mask having a pattern of via openings therein; and then etching the first hard mask layer through the first photoresist mask to form a first hard mask having the pattern of vias openings replicated therein, using an etch system which will also remove the first photoresist mask. The first photoresist mask (the via mask) is, therefore, removed during the formation of the first hard mask, instead of in a separate oxidizing step which would damage the low k dielectric material. Damage to the low k dielectric material during removal of the second photoresist mask (the trench mask) is also avoided by depositing a second layer of low k dielectric material over the first hard mask; forming over the second layer of low k dielectric material a second hard mask layer; forming over the second hard mask layer a second photoresist mask having a pattern of trench openings therein; and then forming the second hard mask by etching the second hard mask layer through the second photoresist resist mask to form a second hard mask having the pattern of trench openings replicated therein, using at etch system which will also remove the second photoresist mask. Thus, the second photoresist mask (the trench mask) is also removed during the formation of the second hard mask, instead of in a separate oxidizing step which would damage the low k dielectric material.