摘要:
A thin film transistor array panel includes a substrate, a gate line formed on the substrate and including a gate electrode, a gate insulating layer formed on the gate line, a semiconductor formed on the gate insulating layer and including a channel of a thin film transistor, a data line formed on the semiconductor and including a source electrode and a drain electrode formed on the semiconductor and opposite to the source electrode with respect to the channel of the thin film transistor, wherein the channel of the thin film transistor covers both side surfaces of the gate electrode.
摘要:
A thin film transistor panel includes an insulating substrate, a gate insulating layer disposed on the insulating substrate, an oxide semiconductor layer disposed on the gate insulating layer, an etch stopper disposed on the oxide semiconductor layer, and a source electrode and a drain electrode disposed on the etch stopper.
摘要:
An oxide semiconductor thin film transistor substrate includes a gate line and a gate electrode disposed on an insulating substrate, an oxide semiconductor pattern disposed adjacent to the gate electrode, a data line electrically insulated from the gate line, the data line and the gate line defining a display region, a first opening exposing a surface of the data line, a second opening exposing a surface of the oxide semiconductor pattern, and a drain electrode disposed on the first opening and a drain electrode pad, the drain electrode extending from the first opening to the second opening and electrically connecting the drain electrode pad and the oxide semiconductor pattern.
摘要:
A thin film transistor (TFT) array substrate and a manufacturing method thereof are provided. The TFT array substrate may include a gate line disposed on a substrate and including a gate line and a gate electrode, an oxide semiconductor layer pattern disposed on the gate electrode, a data line disposed on the oxide semiconductor layer pattern and including a source electrode and a drain electrode of a thin film transistor (TFT) together with the gate electrode, and a data line extending in a direction intersecting the gate line, and etch stop patterns disposed at an area where the TFT is formed between the source/drain electrodes and the oxide semiconductor layer pattern and at an area where the gate line and the data line overlap each other between the gate line and the data line.
摘要:
A display substrate includes a plurality of color filters, a gate line, an insulation layer, a data line and a plurality of pixel electrodes. The color filters are formed on a base substrate. The gate line is formed in a trench defined by at least one of the color filters and extended along a first direction. The insulation layer is formed on the color filters and the gate line. The data line is formed on the insulation layer to be extended along a second direction crossing the first direction. The pixel electrodes are formed on the base substrate having the data line formed thereon. Therefore, a metal wiring is formed in a trench defined by color filters, so that the resistance of the metal wiring may be decreased and an aperture ratio may be enhanced.
摘要:
Provided is an oxide thin-film transistor (TFT) substrate that may enhance the display quality of a display device and a method of fabricating the same via a simple process. The oxide TFT substrate includes: a substrate, a gate line, a data line, an oxide TFT, and a pixel electrode. An oxide layer of the oxide TFT includes a first region that has semiconductor characteristics and a channel, and a second region that is conductive and surrounds the first region. A portion of the first region is electrically connected to the pixel electrode, and the second region is electrically connected to the data line.
摘要:
A mask that is capable of forming a thin-film transistor (TFT) with improved electrical characteristics is presented. The mask includes a drain mask pattern, a source mask pattern and a light-adjusting pattern. The drain mask pattern blocks light for forming a drain electrode. The source mask pattern blocks light for forming a source electrode and faces the drain mask pattern. A distance between the drain and source mask patterns is no more than the resolution of an exposing device. The light-adjusting pattern is formed between end portions of the source mask pattern and the drain mask pattern to block at least some light from entering a space between the source and drain mask patterns.
摘要:
A method of planarizing a substrate. An organic layer is formed on a base substrate to cover a metal line formed on the base substrate. A portion of the organic layer is removed to form a pre-planarization layer exposing the metal layer, so that a surface of the base substrate having the metal line is planarized. The pre-planarization layer is cured to flow toward a side surface of the metal line to form a planarization layer making contact with the side surface of the metal line. Therefore, a stepped portion between the base substrate and the metal line can be minimized or substantially eliminated, thereby increasing the surface uniformity of a subsequent layer, thereby improving the reliability of the manufacturing process.
摘要:
A thin film transistor array panel includes a substrate, a gate line disposed on the substrate, a gate insulating layer disposed on the gate line, a semiconductor layer disposed on the gate insulating layer, a data line contacting the semiconductor layer, a drain electrode contacting the semiconductor layer and separated from the data line, a pixel electrode disposed on the gate insulating layer and contacting the drain electrode, a passivation layer disposed on the pixel electrode, and a common electrode disposed on the passivation layer and including a unit electrode overlapping the pixel electrode.
摘要:
Embodiments of the present invention relate to a liquid crystal display and a driving method thereof. According to an embodiment, the liquid crystal display comprises a pixel electrode having a first subpixel electrode, a second subpixel electrode, and a third subpixel electrode electrically separated from each other. The liquid crystal display comprises a first thin film transistor connected to the first subpixel electrode, a second thin film transistor connected to the second subpixel electrode, a third thin film transistor connected to the third subpixel electrode, and a fourth thin film transistor connected to the second subpixel electrode and the third subpixel electrode. The liquid crystal display comprises a first gate line connected to the first to third thin film transistors, a second gate line connected to the fourth thin film transistor, a data line connected to the first and second thin film transistors, and a storage electrode line connected to the third thin film transistor.