Abstract:
Example embodiments relate to a memory test system having a semiconductor memory device, a coupling circuit and a tester. The semiconductor memory device may include a plurality of first output nodes and a plurality of second output nodes. The first output nodes may be connected to respective first on-die termination circuits that may not be tested, and the second output nodes may be connected to second on-die termination circuits that may be tested. The semiconductor memory device may be configured to generate test signals of the second on-die termination circuits and to provide the test signals to the second output nodes. The coupling circuit may be configured to connect the first output nodes and the second output nodes to communication channels, respectively. The tester may be configured to test a logic state of the test signals of the communication channels.
Abstract:
Provided are a circuit and method for sampling a valid command using a valid address window extended for a high-speed operation in a double pumped address scheme memory device. A method for extending the valid address window includes: inputting a valid command signal and a first address signal at the first cycle of a clock signal; inputting a second address signal at the second cycle of the clock signal; generating a decoded command signal and extended first and second internal address signals respectively in response to the command signal and the address signals; and latching and decoding the extended first and second internal address signals in response to the decoded command signal.
Abstract:
A resist underlayer composition, including a solvent, and an organosilane condensation polymerization product of hydrolyzed products produced from a compound represented by Chemical Formula 1, a compound represented by Chemical Formula 2, and a compound represented by Chemical Formula 3.
Abstract:
A method of forming a dielectric layer, the method including sequentially forming a first oxide layer, a nitride layer, and a second oxide layer on a substrate by performing a plasma-enhanced atomic layer deposition process, wherein a first nitrogen plasma treatment is performed after forming the first oxide layer.
Abstract:
A photoresist underlayer composition includes a solvent, and a polysiloxane resin represented by Chemical Formula 1: {(SiO1.5—Y—SiO1.5)(SiO2)y(XSiO1.5)z}(OH)e(OR1)f. [Chemical Formula 1]
Abstract:
A resist underlayer composition includes a solvent, and an organosilane condensation polymerization product of: a compound represented by the following Chemical Formula 1, a compound represented by the following Chemical Formula 2, and a compound represented by the following Chemical Formula 3, [R1O]3Si—X [Chemical Formula 1] [R2O]3Si—R3 [Chemical Formula 2] [R4O]3Si—Si[OR5]3. [Chemical Formula 3]
Abstract:
A circuit including a voltage boost circuit coupled to a first node and a second node, and configured to apply a boosted first node voltage to the second node; and an inverter circuit coupled to the first node, the second node, and a third node, and configured to generate a signal on the third node in response to the signals on the first node and the second node.
Abstract:
Provided are a circuit and method for sampling a valid command using a valid address window extended for a high-speed operation in a double pumped address scheme memory device. A method for extending the valid address window includes: inputting a valid command signal and a first address signal at the first cycle of a clock signal; inputting a second address signal at the second cycle of the clock signal; generating a decoded command signal and extended first and second internal address signals respectively in response to the command signal and the address signals; and latching and decoding the extended first and second internal address signals in response to the decoded command signal.