Abstract:
This invention provides a reversible hydrogen loading and discharging system and a reversible method for loading and discharging hydrogen. The system and the methods of this invention comprise ethylene glycol as a liquid organic hydrogen carrier and at least one transition metal. By reacting ethylene glycol with at least one transition metal; at least one hydrogen molecule and at least one oligoester of ethylene glycol are formed (hydrogen releasing)⋅, and by reacting at least one oligoester of ethylene glycol with at least one transition metal and at least one hydrogen molecule, at least one ethylene glycol is formed (hydrogen loading).
Abstract:
A process for preparing amides by reacting a primary amine and a primary alcohol in the presence of a Ruthenium complex to generate the amide and molecular hydrogen. Primary amines are directly acylated by equimolar amounts of alcohols to produce amides and molecular hydrogen (the only byproduct) in high yields and high turnover numbers. Also disclosed are processes for hydrogenation of amides to alcohols and amines; hydrogenation of organic carbonates to alcohols; hydrogenation of carbamates or urea derivatives to alcohols and amines; amidation of esters; acylation of alcohols using esters; coupling of alcohols with water and a base to form carboxylic acids; dehydrogenation of beta-amino alcohols to form pyrazines and cyclic dipeptides; and dehydrogenation of secondary alcohols to ketones. These reactions are catalyzed by a Ruthenium complex which is based on a dearomatized PNN-type ligand of formula A1 or precursors thereof of formulae A2 or A3.
Abstract:
The present invention relates to novel Ruthenium complexes and related borohydride complexes, and their use for (1) hydrogenation of amides (including polyamides) to alcohols and amines; (2) preparing amides from alcohols with amines (including preparing polyamides (e.g., polypeptides) by reacting dialcohols and diamines or by polymerization of amino alcohols); (3) hydrogenation of esters to alcohols (including hydrogenation of cyclic esters (lactones), cyclic di-esters (di-lactones) or polyesters); (4) hydrogenation of organic carbonates (including polycarbonates) to alcohols and of carbamates (including polycarbamates) or urea derivatives to alcohols and amines; (5) dehydrogenative coupling of alcohols to esters; (6) hydrogenation of secondary alcohols to ketones; (7) amidation of esters (synthesis of amides from esters and amines); (8) acylation of alcohols using esters; (9) coupling of alcohols with water to form carboxylic acids; and (10) dehydrogenation of beta-amino alcohols to form pyrazines. The present invention further relates to novel uses of certain pyridine Ruthenium complexes.
Abstract:
The present invention relates to novel Ruthenium complexes and related borohydride complexes, and their use for (1) hydrogenation of amides (including polyamides) to alcohols and amines; (2) preparing amides from alcohols with amines (including preparing polyamides (e.g., polypeptides) by reacting dialcohols and diamines or by polymerization of amino alcohols); (3) hydrogenation of esters to alcohols (including hydrogenation of cyclic esters (lactones), cyclic di-esters (di-lactones) or polyesters); (4) hydrogenation of organic carbonates (including polycarbonates) to alcohols and of carbamates (including polycarbamates) or urea derivatives to alcohols and amines; (5) dehydrogenative coupling of alcohols to esters; (6) hydrogenation of secondary alcohols to ketones; (7) amidation of esters (synthesis of amides from esters and amines); (8) acylation of alcohols using esters; (9) coupling of alcohols with water to form carboxylic acids; and (10) dehydrogenation of beta-amino alcohols to form pyrazines. The present invention further relates to novel uses of certain pyridine Ruthenium complexes.
Abstract:
This invention is directed to a catalytic hydrogenation process for the preparation of 1-(4-(benzyloxy)-3-(hydroxymethyl)phenyl)-2-(tert-butylamino)ethanol, which is an intermediate for the preparation of Salbutamol.
Abstract:
The present invention relates to novel manganese complexes and their use, inter alia, for homogeneous catalysis in (1) the preparation of imine by dehydrogenative coupling of an alcohol and amine; (2)C—C coupling in Michael addition reaction using nitriles as Michael donors; (3) dehydrogenative coupling of alcohols to give esters and hydrogen gas (4) hydrogenation of esters to form alcohols (including hydrogenation of cyclic esters (lactones) or cyclic di-esters (di-lactones), or polyesters); (5) hydrogenation of amides (including cyclic dipeptides, lactams, diamide, polypeptides and polyamides) to alcohols and amines (or diamine); (6) hydrogenation of organic carbonates (including polycarbonates) to alcohols or hydrogenation of carbamates (including polycarbamates) or urea derivatives to alcohols and amines; (7) dehydrogenation of secondary alcohols to ketones; (8) amidation of esters (i.e., synthesis of amides from esters and amines); (9) acylation of alcohols using esters; (10) coupling of alcohols with water and a base to form carboxylic acids; and (11) preparation of amino acids or their salts by coupling of amino alcohols with water and a base. (12) preparation of amides (including formamides, cyclic dipeptides, diamide, lactams, polypeptides and polyamides) by dehydrogenative coupling of alcohols and amines; (13) preparation of imides from diols.
Abstract:
The present invention provides a system, a process and a method of storing hydrogen (H2) and releasing it on demand, comprising and making use of N-heterocycles as liquid organic hydrogen carriers (LOHCs).
Abstract:
The present invention relates to novel Ruthenium complexes of formulae A1-A4 and their use, inter alia, for (1) dehydrogenative coupling of alcohols to esters; (2) hydrogenation of esters to alcohols (including hydrogenation of cyclic esters (lactones) or cyclic di-esters (di-lactones), or polyesters); (3) preparing amides from alcohols and amines—(including the preparation of polyamides (e.g., polypeptides) by reacting dialcohols and diamines and/or polymerization of amino alcohols and/or forming cyclic dipeptides from p-aminoalcohols; (4) hydrogenation of amides (including cyclic dipeptides, polypeptides and polyamides) to alcohols and amines; (5) hydrogenation of organic carbonates (including polycarbonates) to alcohols or hydrogenation of carbamates (including polycarbamates) or urea derivatives to alcohols and amines; (6) dehydrogenation of secondary alcohols to ketones; (7) amidation of esters (i.e., synthesis of amides from esters and amines); (8) acylation of alcohols using esters; (9) coupling of alcohols with water and a base to form carboxylic acids; and (10) preparation of amino acids or their salts by coupling of amino alcohols with water and a base. The present, invention further relates to the use of certain known Ruthenium complexes for the preparation of amino acids or their salts from amino alcohols.