摘要:
In fabricating an optical I/O array module, an optical waveguide provided with mirror parts, each having a tapered face, is formed on a substrate, a convex shaped member or a concave shaped member is placed at spots above the respective mirror parts of the optical waveguide, and laser diode arrays and photo diode arrays, provided with either a concave shape, or a convex shape, are mated with, or into the convex shaped member or the concave shaped member before being mounted. Further, there are formed multiple filmy layers, on which an LSI where a driver IC LSI of optical elements, and an amplifier LSI of the optical elements are integrated.
摘要:
In fabricating an optical I/O array module, an optical waveguide provided with mirror parts, each having a tapered face, is formed on a substrate, a convex shaped member or a concave shaped member is placed at spots above the respective mirror parts of the optical waveguide, and laser diode arrays and photo diode arrays, provided with either a concave shape, or a convex shape, are mated with, or into the convex shaped member or the concave shaped member before being mounted. Further, there are formed multiple filmy layers, on which an LSI where a driver IC LSI of optical elements, and an amplifier LSI of the optical elements are integrated.
摘要:
A photoelectric composite wiring module, being superior in performances and mass-productivity thereof, and a transmission apparatus of applying that therein are provided.Optical devices 2a and 2b are disposed on a circuit board 1, so that they are optically coupled with optical guides 11 formed on the circuit board 1, wherein a filet-like resin is formed on a side surface of a bump, which is formed on side surfaces or/and upper portions of the optical devices, on an upper layer thereof being compressed a resin film to be adhered thereon, thereby forming an insulation film 31, and an electric wiring layer 3 is laminated, so that the electrodes of the optical devices 2 and wirings of the electric wiring layer are electrically connected with, and further thereon is mounted a semiconductor element 4; thereby obtaining the structure for brining the transmission speed to be high per channel, and for preventing the power consumption from increasing. Also, it has the structure of not causing deterioration of the optical devices due to ill influences of moisture, thereby achieving high reliability. Further, it also produces an easy connecting method with a transmission apparatus, and high productivity thereof.
摘要:
A photoelectric composite wiring module includes a circuit substrate, an optical device, an LSI (device) having a driver and an amplifier for the optical device, and a thin film wiring layer having an electrical wiring. The optical device is connected with the LSI by means of the electrical wiring. The optical device is formed on the circuit substrate and optically coupled to an optical waveguide formed in the circuit substrate. The thin film wiring layer is formed on the optical device to ensure that the optical device is electrically connected with the electrical wiring of the thin film wiring layer. The LSI is mounted on and electrically connected with the thin film wiring layer.
摘要:
A photoelectric composite wiring module, being superior in performances and mass-productivity thereof, and a transmission apparatus of applying that therein are provided.Optical devices 2a and 2b are disposed on a circuit board 1, so that they are optically coupled with optical guides 11 formed on the circuit board 1, wherein a filet-like resin is formed on a side surface of a bump, which is formed on side surfaces or/and upper portions of the optical devices, on an upper layer thereof being compressed a resin film to be adhered thereon, thereby forming an insulation film 31, and an electric wiring layer 3 is laminated, so that the electrodes of the optical devices 2 and wirings of the electric wiring layer are electrically connected with, and further thereon is mounted a semiconductor element 4; thereby obtaining the structure for brining the transmission speed to be high per channel, and for preventing the power consumption from increasing. Also, it has the structure of not causing deterioration of the optical devices due to ill influences of moisture, thereby achieving high reliability. Further, it also produces an easy connecting method with a transmission apparatus, and high productivity thereof.
摘要:
In a thermally assisted magnetic recording head having a light source and a waveguide to lead a laser beam radiated from the light source to a front end of the magnetic head, while blocking an adverse effect of heat generated in the light source and securing a good floating characteristic, the light source and the magnetic head are optically coupled with high efficiency and the magnetic head itself is reduced in size. This invention provides a reflection mirror that is formed of a part or whole of one inclined end surface of the semiconductor laser mounted on the first submount. Near one end surface of the slider is provided the optical waveguide that pierces through the slider in a direction of the thickness thereof. The slider is mounted on the second submount and the positions of the first submount and the second submount are adjusted to practically align the light axis of the beam emitted from the mirror with the light axis of the optical waveguide, thereby realizing a novel thermally assisted magnetic recording head.
摘要:
A semiconductor device includes a semiconductor chip, a first substrate, and a second substrate. The first substrate includes a plurality of wires and a plurality of first electrodes, each first electrode being connected with each wire. The second substrate includes the semiconductor chip that is mounted thereon, and a plurality of second electrodes with, each second electrode being connected with the each first electrode of the first substrate. The widths of the wires of the first substrate are different depending on the lengths of the wires. By changing the widths of the wires depending on their lengths, it is possible to reduce variation in stiffness of the electrodes and vicinities of electrodes, whereby variation in ultrasonic bonding strength can be reduced.
摘要:
The present invention is characterized by a structure having a substrate 1, and metallization layers 2 formed on the substrate 1, on which a Sn solder film 3 and an Ag film 4 are formed. The Ag film 4 is a metal free from oxidization at room temperature in the atmosphere. In a wet process, since only an exposed side of the Sn solder film 3 is oxidized by the cell reaction of Ag and Sn, an upper surface of the Ag film 4 on the solder film, which would otherwise affect the connection, is not oxidized. Since the Ag film 4 melts into the Sn solder simultaneously with melting of the Sn solder film 3, the Ag film 4 does not hinder the connection.
摘要:
A semiconductor device includes a semiconductor chip, a first substrate, and a second substrate. The first substrate includes a plurality of wires and a plurality of first electrodes, each first electrode being connected with each wire. The second substrate includes the semiconductor chip that is mounted thereon, and a plurality of second electrodes with, each second electrode being connected with the each first electrode of the first substrate. The widths of the wires of the first substrate are different depending on the lengths of the wires. By changing the widths of the wires depending on their lengths, it is possible to reduce variation in stiffness of the electrodes and vicinities of electrodes, whereby variation in ultrasonic bonding strength can be reduced.
摘要:
The present invention is characterized by a structure having a substrate 1, and metallization layers 2 formed on the substrate 1, on which a Sn solder film 3 and an Ag film 4 are formed. The Ag film 4 is a metal free from oxidization at room temperature in the atmosphere. In a wet process, since only an exposed side of the Sn solder film 3 is oxidized by the cell reaction of Ag and Sn, an upper surface of the Ag film 4 on the solder film, which would otherwise affect the connection, is not oxidized. Since the Ag film 4 melts into the Sn solder simultaneously with melting of the Sn solder film 3, the Ag film 4 does not hinder the connection.