摘要:
Hydrogen-rich reformed gas is produced by reaction including partial oxidation of feed gas in a reforming reaction section (6). In this case, for the purpose of reducing temperature variations in the reforming reaction section (6), improving the thermal efficiency thereof and providing a reformer (A) with a simple and compact construction, the reformer (A) is formed in a double-wall structure consisting of a housing (1) and partitions (2), (2) inside of the housing (1), the reforming reaction section (6) is contained between the partitions (2), (2), and a feed gas passage (3) is provided by the space between the housing (1) and the partition (2). In this manner, the feed gas passage (3) is provided in the surrounding area of the reforming reaction section (6). The reforming reaction section (6) is thermally insulated by the feed gas passage (3) so that temperature variations in the reforming reaction section (6) can be reduced. The feed gas in the feed gas passage (3) is preheated by heat of reaction in the reforming reaction section (6) so that the self-recovery of heat can improve thermal efficiency of the reformer (A). In addition, a preheater for preheating the feed gas can be formed integrally between the feed gas passage (3) and the reforming reaction section (6) thereby compacting the construction of the reformer.
摘要:
Placed in a fuel reformer (5) is a catalyst (27) which exhibits an activity to the partial oxidation reaction of a source fuel. The source fuel, oxygen, and steam are supplied to the fuel reformer (5) such that the ratio O2/C, i.e., the ratio of the number of moles of the oxygen to the number of moles of carbon of the source fuel, is not less than 0.9 times the O2/C theoretical mixture ratio in the partial oxidation reaction, and the H2O/C ratio, i.e., the ratio of the number of moles of the steam to the number of the source fuel carbon moles is not less than 0.5, wherein the partial oxidation reaction occurs in the catalyst (27) to cause a water gas shift reaction to take place in which CO produced by the partial oxidation reaction is a reactant, for generation of hydrogen.
摘要:
Shift conversion of hydrogen-rich reformed gas produced by reaction including partial oxidation of feed gas in a reforming reaction section (6) is made by its water gas shift reaction with shift conversion catalyst in a shift reaction section (10) in order to reduce CO contained in the reformed gas and enhance the yield of hydrogen. In this case, for the purpose of enabling high-temperature reformed gas from the reforming reaction section (6) to undergo the shift conversion as it is and thereby simplifying the construction of a shift conversion unit, the reformed gas from the reforming reaction section (6) is introduced directly into a reformed gas passage (11) of the shift reaction section (10) and thereby undergoes the shift reaction while heat-exchanging with the feed gas.
摘要:
When humidifying, almost to water vapor saturation, reformed gas that is supplied to a hydrogen electrode of a solid polymer type fuel cell (1) and air that is supplied to an oxygen electrode of the fuel cell (1), heating for obtaining water vapor to establish such saturation is not required. For the purpose of improving the thermal efficiency of a fuel cell system, water vapor contained in hydrogen electrode exhaust gas exhausted from the hydrogen electrode of the fuel cell (1) is let to penetrate through a water vapor permeable membrane (34), whereas water vapor contained either in air that is introduced into a partial oxidation reformation section (6) or in oxygen electrode exhaust gas exhausted from the oxygen electrode is let to penetrate through the water vapor permeable membrane (34) so that the water vapor is supplied to air that is supplied to the oxygen electrode of the fuel cell (1).
摘要:
A fluid transferring apparatus achieves a two-dimensional flow of fluid with high efficiency and at low noise by imitating a Weis-Fogh mechanism with use of a simple mechanism. In the fluid transferring apparatus, a wing assembly X comprised of a predetermined number of plate-like wings is provided in a transverse direction of a flow passage. A wing assembly X is supported by a link of a crank mechanism which is constituted of a crank rotated by a motor, a slider slidable in a direction orthogonal to a direction of a flow in a flow passage and the link coupling the crank with the slider, so that rotational motion of the crank is transmitted to the slider as a reciprocal movement. While an angle of attack of each wing is changed by oscillating action of the link, each wing is moved in a transverse direction of the flow passage as the link is reciprocated, thereby achieving transfer of fluid.
摘要:
A humidity control system includes three dehumidifiers. Each of the dehumidifiers alternately switches between first batch operation in which air whose moisture has been adsorbed in a first adsorption component is supplied to a room and air heated in a heat exchanger is exhausted to outside the room through a second adsorption component, and second batch operation in which air whose moisture has been adsorbed in the second adsorption component is supplied to the room and air heated in the heat exchanger is exhausted to outside the room through the first adsorption component. The system further includes: a controller allowing the switchings of the dehumidifiers to be performed at different timings; and a chamber collecting air to be supplied from the dehumidifiers to the room.
摘要:
A humidity control system includes three dehumidifiers. Each of the dehumidifiers alternately switches between first batch operation in which air whose moisture has been adsorbed in a first adsorption component is supplied to a room and air heated in a heat exchanger is exhausted to outside the room through a second adsorption component, and second batch operation in which air whose moisture has been adsorbed in the second adsorption component is supplied to the room and air heated in the heat exchanger is exhausted to outside the room through the first adsorption component. The system further includes: a controller allowing the switchings of the dehumidifiers to be performed at different timings; and a chamber collecting air to be supplied from the dehumidifiers to the room.
摘要:
It is intended to provide an apparatus for separating and storing blood components which facilitates the preparation of serum. An apparatus (1) for separating and storing blood components which comprises a blood pooling part (2) for pooling a fluid at least containing liquid components containing a blood-origin coagulation factors and platelets, a component storing part (3) for storing at least a part of the components of the fluid pooled in the blood pooling part (2), and a connector part (4) aseptically connecting the blood pooling part (2) to the component storing part (3), wherein the blood pooling part (2) comprises a blood pooling container (21) in the form of a flexible tube, a fluid inlet channel (27) for introducing the fluid into the blood pooling container (21) and a component outlet channel (28) for leading out at least a part of the components of the fluid; the component storing part (3) has a component inlet channel (37) for introducing at least a part of the components of the fluid having been led out form the blood pooling container (21); and the connector part (4) connects the component outlet channel (28) to the component inlet channel (37).
摘要:
A liquid component collecting device capable of more easily collecting a liquid component. A liquid component collecting device (100) is provided with: a flexible cylindrical liquid component storage container (21) having an opening at one end thereof; a cylindrical first housing container (22) for housing the liquid component storage container (21) and having an opening at one end thereof; and a first cap (23) connected to the opening in the liquid component storage container (21) and fitted to the opening in the first housing container (22). A pressure regulating space (26) independent of the internal space of the liquid component storage container (21) is formed between the outer side of the liquid component storage container (21) and the inner side of the first housing container (22). The first cap (23) is provided with a liquid component inlet channel (27) for introducing blood into the liquid component storage container (21), a first communication channel (28) communicating with the internal space of the liquid component storage container (21), and a second communication channel (29) communicating with the pressure regulating space (26).