摘要:
Isoelectric point markers for a gel isoelectric separation are prepared to comprise at least two colored proteins of which the isoelectric point pHs are known and wherein the difference between the highest value and the lowest value among the said pHs is not less than 0.5. The markers are applied to analyze proteins in a gel isoelectric separation method. The method employing the said markers makes it easy to analyze proteins and shows an excellent performance.
摘要:
A group of compounds having the following general formula can be obtained by reacting chromoprotein and organic acid: ##STR1## wherein X is a chromophore, P is a protein, NH.sub.2 is mainly .epsilon.-amino group of lysine, n is a positive integer of 1 to 18, and m is a positive integer in the relation of m.ltoreq.n. This compound group has one to eighteen organic acids bonded thereto, and shows various isoelectric points in accordance with the number of the organic acids, but the respective isoelectric points are maintained constant. If such compounds each having an individual isoelectric point, are used as isoelectric point markers, it is possible to recognize accurately the position of isoelectric point only by a visual operation.
摘要:
Colored proteins having a known molecular weight of 1800 to 321200 are prepared by coupling monomers of a colored protein having a known molecular weight or by coupling a colored protein having a known molecular weight with a colorless protein having a known molecular weight. At least two proteins are selected from the so prepared colored proteins and used as a colored molecular weight marker. This colored molecular weight marker is used for determination of the molecular weight of a protein having an unknown molecular weight, and can also be used as a reference protein for purification of a protein having a known molecular weight.
摘要:
A powder material for three-dimensional modeling includes a base particle and a resin covering the base particle, wherein the resin has a first absorption peak in the range of from 1,141 cm−1 to 1,145 cm−1 and a second absorption peak in the range of from 1,089 cm−1 to 1,093 cm−1 in an infrared absorption spectrum and the intensity ratio of the first absorption peak to the second absorption peak is from 0.40 to 0.70.
摘要:
A vehicle 10 according to an embodiment of the present invention is applied to a charge-discharge system CDS. The charge-discharge system includes the vehicle 10, an electric power cable 20, a plug-in station 30, a HEMS 40, and a commercial power supply 50. In a state where the connector 21 of the electric power cable 20 is connected with the inlet of the vehicle 10, an electric power is discharged/supplied from the vehicle electric storage device 11 to an external electric load (e.g., external electric storage device 41). Further, the vehicle electric storage device 11 is capable of being charged by the external power supply 50 through the electric power cable 20. A control device 12 of the vehicle 10 obtains/detects a permissible current value of the electric power cable 20, based on a specific signal (control pilot signal) which is transmitted through a CPLT terminal of the connector 21 before it starts the discharge to the external electric load from the vehicle electric storage device 11.
摘要:
A powder material for three-dimensional modeling includes a base material and a resin covering the base material, wherein the covering factor by the resin is 15 percent or more and the aspect ratio of the powder material is 0.90 or greater as calculated according to the following relation 1. Aspect ratio (average)=X1×Y1/100+X2×Y2/100+ . . . +Xn×Yn/100, Relation 1 In the Relation 1, Y1+Y2+ . . . +Yn=100 (percent), Xn represents the aspect ratio (minor axis/major axis), Yn represents an existence ratio (percent) of a particle having an aspect ratio of Xn, and n is 15,000 or greater.
摘要翻译:在关系1中,Y1 + Y2 +。 。 。 + Yn = 100(%),Xn表示长宽比(短轴/长轴),Yn表示纵横比为Xn,n为15000以上的粒子的存在比(百分比)。
摘要:
A vehicle 10 according to the embodiment of the present invention is applied to a charge-discharge system CDS. The charge-discharge system includes the vehicle 10, an electric power cable 20, a plug-in station 30, a HEMS 40, and a commercial power supply 50. From the HEMS 40 to the vehicle 10, a request for charge to charge an electric storage device 11 and a request for discharge to allow an external electric load to use an electric power of the electric storage device 11 are transmitted. When a request is changed from the request for charge to the request for discharge, or vice versa, the vehicle 10 realizes a charge-discharge stop state in which neither a charging operation nor a discharging operation is performed without directly changing from the charging operation to the discharging operation, or vice versa.
摘要:
A powder for 3D modeling includes a base particle and a resin having a functional group represented by the following Chemical formula 1, where A1 represents O or NH and R1, R2, and R3 each, independently represent CH3, C2H5, C3H7, or C4H9. The base particle is covered with the resin.
摘要:
An interior lamp includes a design portion and a function portion. A circuit board is attached to the function portion. A light source is mounted on the circuit board. Terminals are mounted on a side portion of the circuit board. A connector is disposed on a side portion of the function portion. Connector terminals are provided on the connector. A switch has a switch knob and a switch body. The switch knob is attached to a side portion of the design portion. The switch body is attached to the side portion of the function portion. The switch knob and the switch body are operated in an interlocked manner to perform electrical connection between the terminals and the connector terminals selectively so as to perform a tuning on or off of the light source.
摘要:
A vehicle 10 according to an embodiment of the present invention is applied to a charge-discharge system CDS. The charge-discharge system includes the vehicle 10, an electric power cable 20, a plug-in station 30, a HEMS 40, and a commercial power supply 50. In a state where the connector 21 of the electric power cable 20 is connected with the inlet of the vehicle 10, an electric power is discharged/supplied from the vehicle electric storage device 11 to an external electric load (e.g., external electric storage device 41). Further, the vehicle electric storage device 11 is capable of being charged by the external power supply 50 through the electric power cable 20. A control device 12 of the vehicle 10 obtains/detects a permissible current value of the electric power cable 20, based on a specific signal (control pilot signal) which is transmitted through a CPLT terminal of the connector 21 before it starts the discharge to the external electric load from the vehicle electric storage device 11.