摘要:
A method of fabricating a borderless via is disclosed. A semiconductor substrate having a first dielectric layer thereon is provided. Next, a first conductive structure and a second conductive structure whose area is much smaller than said first conductive structure are formed on said first dielectric layer. After that, a second dielectric layer with an uneven surface is formed. Then, a planarizing layer is coated over said second dielectric layer to fill said uneven surface. Next, an etch back process is used to create a etching stop layer consisting of a portion of second dielectric layer. Subsequently, a third dielectric layer is formed over said second dielectric layer followed by selectively etching said third dielectric layer until said second dielectric layer is exposed to create a borderless via.
摘要:
A fabrication method for reducing the critical dimension of the conductive line and the space is described in which a conductive layer and a mask layer are sequentially formed on a substrate. A taper etching is conducted to form a plurality of first openings with the cross-sections of the openings being tapered off from top to bottom and exposing the surface of the conductive layer. A planarized sacrificial layer at a similar height as the mask layer is formed covering the exposed surface of the conductive layer. A second taper etching is further conducted on the exposed mask layer to form a plurality of second openings with the cross-sections of the openings being tapered off from top to bottom. The sacrificial layer is then removed. Thereafter, an anisotropic etching is conducted on the exposed conductive layer, using the mask layer as a hard mask, to form a plurality of conductive lines followed by a removal of the mask layer.
摘要:
A method of manufacturing a DRAM capacitor is described. A silicon substrate structure includes an oxide layer over a substrate and a polysilicon layer over the oxide layer. The polysilicon layer also includes a plug that penetrates the oxide layer. A patterned photoresist layer is next formed over the polysilicon layer. Spacers having a low etching rate are formed on the sidewalls of the photoresist layer by carrying out a chemical reaction next to the sidewall of the photoresist layer. A dry etching operation is carried out to etch the unreacted photoresist layer and the polysilicon layer exposed by the openings in the photoresist layer. Using the spacers as an etching mask, a portion of the polysilicon layer under the photoresist layer is removed by continuing the dry etching operation. Lastly, the spacers are removed to form a crown-shaped capacitor.
摘要:
A method for forming a pullback opening above a shallow trench isolation structure. A patterned mask layer is formed over a substrate. A sacrificial layer is formed on the sidewalls of the mask layer. The exposed portion of the substrate is etched to form a trench in the substrate. The sacrificial layer is removed to increase the width of the opening above the trench.
摘要:
A double recess crown-shaped DRAM capacitor is formed in a simplified process. A dielectric layer is formed over a substrate. Using photolithographic and etching techniques, a contact opening is formed in the dielectric layer. A conductive layer is formed over the dielectric layer filling the contact opening to form a conductive plug. A second dielectric layer is formed over the conductive layer. Again using photolithographic and etching techniques, the second dielectric layer is patterned to form a trapezoidal-shaped dielectric layer. An organic bottom anti-reflective coating (organic BARC) is coated over the trapezoidal-shaped dielectric layer and the conductive layer. Organic BARC above the trapezoidal-shaped dielectric layer is removed. Using the organic BARC as an etching mask, the trapezoidal-shaped dielectric layer is etched to form triangular-shaped dielectric layers and a trench in the conductive layer. The residual organic BARC is completely removed. Using the triangular-shaped dielectric layers as a hard etching mask, two types of trenches each having a different depth are formed in the conductive layer. The triangular-shaped dielectric layers are removed to form a double-recess lower electrode. Hemispherical silicon grains are grown over the interior surface of the double-recess lower electrode as well as the external sidewalls. Finally, a conformal dielectric layer and a conformal conductive layer are sequentially formed over the surface of the double-recess lower electrode.
摘要:
A structure and method for replacement metal gate technology is provided for use in conjunction with semiconductor fins or other devices. An opening is formed in a dielectric by removing a sacrificial gate material such as polysilicon. The surfaces of the semiconductor fin within which a transistor channel is formed, are exposed in the opening. A replacement metal gate is formed by forming a diffusion barrier layer within the opening and over a gate dielectric material, the diffusion barrier layer formation advantageously followed by an in-situ plasma treatment operation. The treatment operation utilizes at least one of argon and hydrogen and cures surface defects in the diffusion barrier layer enabling the diffusion barrier layer to be formed to a lesser thickness. The treatment operation decreases resistivity, densifies and alters the atomic ratio of the diffusion barrier layer, and is followed by metal deposition.
摘要:
A semiconductor device with improved roll-off resistivity and reliability are provided. The semiconductor device includes a gate dielectric overlying a semiconductor substrate, a gate electrode overlying the gate dielectric, a gate silicide region on the gate electrode, a source/drain region adjacent the gate dielectric, and a source/drain silicide region on the source/drain region, wherein the source/drain silicide region and the gate silicide region have different metal compositions.
摘要:
A method of forming a silicided gate on a substrate having active regions is provided. The method comprises forming silicide in the active regions and a portion of the gate, leaving a remaining portion of the gate unsilicided; forming a shielding layer over the active regions and gate after the forming step; forming a coating layer over portions of the shielding layer over the active regions; opening the shielding layer to expose the gate, wherein the coating layer protects the portions of the shielding layer over the active regions during the opening step; depositing a metal layer over the exposed gate; and annealing to cause the metal to react with the gate to silicidize at least a part of the remaining portion of the gate.
摘要:
Methods and structures for preventing salicidation are disclosed. A substrate has an gate electrode on it. Spacers are on sidewalls of the gate electrode, exposing a top portion of the gate electrode. A dielectric layer is formed above the spacers, covering the exposed top portion of the gate electrode. Methods and structures for forming source and drain salicidation are disclosed. They further salicidize source and drain regions which are adjacent to the spacers without forming salicidation on the gate electrode while salicidizing the source and drain regions. Methods and structures for forming gate electrode salicidation are also disclosed. They further form another dielectric layer covering the salicidized source and drain regions. A portion of the dielectric layer is removed so as to expose a top surface of the gate electrode. The gate electrode is then salicidized.
摘要:
A new method to form metal silicide gates in the fabrication of an integrated circuit device is achieved. The method comprises forming polysilicon lines overlying a substrate with a dielectric layer therebetween. A first isolation layer is formed overlying the substrate and the sidewalls of the polysilicon lines. The first isolation layer does not overlie the top surface of the polysilicon lines. The polysilicon lines are partially etched down such that the top surfaces of the polysilicon lines are below the top surface of the first isolation layer. A metal layer is deposited overlying the polysilicon lines. A thermal anneal is used to completely convert the polysilicon lines to metal silicide gates. The unreacted metal layer is removed to complete the device.