摘要:
A method for manufacturing a substrate of an analytical sensor and the substrate thus prepared are disclosed. The method for manufacturing the substrate of the sensor application according to the present invention is characterized in that it comprises (a) the step of preparing a dispersed solution of nanoparticles, which are stable in a volatile organic solvent due to surface modification of nanoparticles having a pre-designed certain size on the nanometer level with an organic functional group (b) the step of preparing a single layer film of nanoparticles surface-modified with the organic functional group on the interface using said dispersed solution of nanoparticles on the basis of the Langmuir-Blodgett method, and then transferring said single layer film of nanoparticles to the substrate; and (c) the step of coating the substrate to which said single layer film of nanoparticles is transferred, with the metal thin film by means of the vacuum vapor deposition, and then optionally removing nanoparticles to manufacture a nanostructure to be used as the analytical sensor using optical characteristics. According to the method for manufacturing the substrate of the sensor application according to the present invention as above, the nanoparticles can be uniformly fixed on the solid substrate having a great area above 10×10 cm2 using the Langmuir-Blodgett method, and by such method the size, distance and shape of nanoparticles can be controlled to manufacture the nanostructures to be used as the analytical sensor, which is possible to reproduce and mass-produce. When the sensitivity property of the sensor is measured using the nanostructure substrate, thus produced, to be used as the analytical sensor, it can be identified that the sensitivity can be highly improved.
摘要:
A method for manufacturing a substrate of an analytical sensor and the substrate thus prepared are disclosed. The method for manufacturing the substrate of the sensor application according to the present invention is characterized in that it comprises (a) the step of preparing a dispersed solution of nanoparticles, which are stable in a volatile organic solvent due to surface modification of nanoparticles having a pre-designed certain size on the nanometer level with an organic functional group (b) the step of preparing a single layer film of nanoparticles surface-modified with the organic functional group on the interface using said dispersed solution of nanoparticles on the basis of the Langmuir-Blodgett method, and then transferring said single layer film of nanoparticles to the substrate; and (c) the step of coating the substrate to which said single layer film of nanoparticles is transferred, with the metal thin film by means of the vacuum vapor deposition, and then optionally removing nanoparticles to manufacture a nanostructure to be used as the analytical sensor using optical characteristics. According to the method for manufacturing the substrate of the sensor application according to the present invention as above, the nanoparticles can be uniformly fixed on the solid substrate having a great area above 10×10 cm2 using the Langmuir-Blodgett method, and by such method the size, distance and shape of nanoparticles can be controlled to manufacture the nanostructures to be used as the analytical sensor, which is possible to reproduce and mass-produce. When the sensitivity property of the sensor is measured using the nanostructure substrate, thus produced, to be used as the analytical sensor, it can be identified that the sensitivity can be highly improved.
摘要:
A glass frit includes at least three metal oxides selected from the group of lead oxide, silicon oxide, tellurium oxide, bismuth oxide, zinc oxide, and tungsten oxide, wherein the glass frit exhibits a phase transition peak in the range of about 300° C. to about 600° C. on a cooling curve obtained via an TG-DTA analysis while a mixture of the glass frit and silver powder, obtained by mixing the glass frit with the silver powder in a weight ratio of 1:1, is cooled at a cooling rate of 10° C./min, after heating the mixture to 850° C. at a heating rate of 20° C./min and held there for a wait-time of 10 minutes.
摘要:
An air freshener generating apparatus of a vehicle air conditioning system includes a body in which an inlet pipe is communicated with an outlet pipe and on a circumferential surface of which ball plungers are mounted at intervals along circumferential lines on which the inlet pipe and the outlet pipe are located respectively, a cartridge rotatably coupled to the body and having at least one partition wall such that at least one air freshener emitter is filled within spaces defined by the partition wall, the cartridge having through-holes facing the ball plungers, and an actuator configured to rotate the cartridge by a predetermined angle. When the cartridge is rotated by the predetermined angle, air is supplied through the through-hole facing the inlet pipe such that one air freshener is discharged through the through-hole facing the outlet pipe, and the ball plungers are configured to block the rest of the through-holes.
摘要:
Provided herein is a surface acoustic wave (“SAW”) sensor device including an isolation component of a target biomolecule. A sample containing the target biomolecule is separated by its size using electrophoresis, and sequentially reacts with a SAW sensor. In other words, the device is capable of detecting the target biomolecule by separating biomolecules using electrophoresis, and applying the separated biomolecules to the SAW sensor.
摘要:
Mitigating radiation induced injury to a mammal that has been exposed to radiation by administering a pharmaceutically effective amount of a composition comprising at least one CXCR4 antagonist to the mammal.
摘要:
The water gas shift reactor includes a gas reaction tank including a reaction chamber formed in the shape of a hollow body provided with a porous plate installed therein to divide the inside of the reaction chamber into an upper reaction space and a lower collection space and a catalyst stacked on the upper surface of the porous plate to convert carbon monoxide into hydrogen, and an insulating layer provided at the outer surface of the reaction chamber, a syngas storage tank to store the syngas, a syngas supply pipe to supply the syngas to the gas reaction tank, after the syngas is heated by a preheater, a steam supply pipe to supply steam generated from a steam generator to the gas reaction tank such that the steam reacts with the syngas, after the steam is heated by a preheater, and a reaction gas discharge pipe.
摘要:
The invention comprises a novel virus that can kill mammalian cancer cells efficiently. The virus produces a novel protein that converts two non-toxic prodrugs into potent chemotherapeutic agents. These chemotherapeutic agents are produced locally and help the virus kill the cancer cells as well as sensitize them to radiation. In preclinical studies, the virus has proven effective at killing a variety of mammalian cancer cells either alone or when combined with prodrug therapy and/or radiation therapy. The invention may provide a safe and effective treatment for human cancer.
摘要:
Some embodiments of the invention comprise systems, methods and/or compositions for the systemic use of histone deacetylase inhibitors (“HDACi”) to protect against or alleviate the effects of radiation exposure, whether due to hostile actions, such as terrorist activity; through therapeutic radiation exposure; or through other methods of intentional or unintentional exposure to radiation, including but not limited to, total body irradiation.
摘要:
Provided are a solar cell and a method of manufacturing the same. The solar cell includes a transparent substrate. A first electrode and a transparent insulating layer are sequentially stacked over a plurality of first regions of the transparent substrate. A first electrode, a light-converting layer, a transparent insulating layer, and a second electrode are sequentially stacked over a second region of the transparent substrate other than the first regions. Therefore, light incident from the substrate can penetrate between the light-converting layers spaced apart from each other, thus manufacturing a transparent solar cell. Also, since light scattered by the transparent insulating layer is also incident into the side of the light-converting layer, the light-receiving area is not reduced and thus the efficiency of the solar cell can be increased.