摘要:
A clad superconductive wire or tape of an oxide superconductive material and a silver-copper alloy base containing 0.05-90 atomic % a copper or a silver alloy. The silver-copper alloy base contains one or more elements selected from the group of Zr, Hf, Al, V, Nb and Ta in amounts of from 0.01-3 atomic %, or contains Au in amount of 0.01-10 atomic %. The silver alloy contains one or more elements selected from the group of Ti, Zr, Hf, V, Nb, Ta, Mg, Ca, Sr and Ba in amounts of from 0.01 to 3 atomic %, or one or more elements selected from the group of Au, Al, Ga, In and Sn in amounts of 0.05 to atomic %. The base material is filled with a Bi-containing oxide of Bi1PbuSrxCayCuzOw wherein u=0-0.3, X=0.8-1.2, y=0.2-1.2, and z=0.8-2.0, and processed to obtain a superconductive wire or tape having enhanced mechanical strength, superconductivity and plastic workability.
摘要:
A clad superconductive wire or tape of an oxide superconductive material and a silver-copper alloy base containing 0.05-90 atomic % copper or a silver alloy. The silver-copper alloy base contains one or more elements selected from the group of Zr, Hf, Al, V, Nb and Ta in amounts of from 0.01-3 atomic %, or contains Au in amount of 0.01-10 atomic %. The silver alloy contains one or more elements selected from the group of Ti, Zr, Hf, V, Nb, Ta, Mg, Ca, Sr and Ba in amounts of from 0.01 to 3 atomic %, or one or more elements selected from the group of Au, Al, Ga, In and Sn in amounts of 0.05 to atomic %. The base material is filled with a Bi-containing oxide of Bi1PbuSrxCayCuzOw wherein u=0-0.3, X=0.8-1.2, y=0.2-1.2, and z=0.8-2.0, and processed to obtain a superconductive wire or tape having enhanced mechanical strength, superconductivity and plastic workability.
摘要:
A clad superconductive wire or tape of an oxide superconductive material and a silver-copper alloy base containing 0.05-90 atomic % copper or a silver alloy. The silver-copper alloy base contains one or more elements selected from the group of Zr, Hf, Al, V, Nb and Ta in amounts of from 0.01-3 atomic %, or contains Au in amount of 0.01-10 atomic %. The silver alloy contains one or more elements selected from the group of Ti, Zr, Hf, V, Nb, Ta, Mg, Ca, Sr and Ba in amounts of from 0.01 to 3 atomic %, or one or more elements selected from the group of Au, Al, Ga, In and Sn in amounts of 0.05 to atomic %. The base material is filled with a Bi-containing oxide of Bi.sub.1 Pb.sub.u Sr.sub.x Ca.sub.y Cu.sub.z O.sub.w wherein u=0-0.3, x=0.8-1.2, y=0.2-1.2, and z=0.8-2.0, and processed to obtain a superconductive wire or tape having enhanced mechanical strength, superconductivity and plastic workability.
摘要:
A clad superconductive wire or tape of an oxide superconductive material and a silver-copper alloy base containing 0.05-90 atomic % copper or a silver alloy. The silver-copper alloy base contains one or more elements selected from the group of Zr, Hf, Al, V, Nb and Ta in amounts of from 0.01-3 atomic %, or contains Au in amounts of 0.01-10 atomic %. The silver alloy contains one or more elements selected from the group of Ti, Zr, Hf, V, Nb, Ta, Mg, Ca, Sr and Ba in amounts of from 0.01 to 3 atomic %, or one or more elements selected from the group of Au, Al, Ga, In and Sn in amounts of 0.05 to 5 atomic %. The base material is filled with a Bi-containing oxide of Bi.sub.1 Pb.sub.u Sr.sub.x Ca.sub.y Cu.sub.z O.sub.w wherein u=0-0.3, X=0.8-1.2, y=0.2-1.2, and z=0.8-2.0, and processed to obtain a superconductive wire or tape having enhanced mechanical strength, superconductivity and plastic workability.
摘要:
A substrate electrode having a plurality of substrate holders capable of causing a substrate to tilt by an arbitrary angle .theta. relative to the horizontal plane is provided. A plurality of auxiliary electrodes are arranged substantially vertically below the substrate electrode and between the substrate electrode and a target. The substrate electrode and the auxiliary electrodes are electrically insulated from the target. Bias voltage applied to the substrate electrode and the auxiliary electrodes causes the plasma boundary between the cathode dark space and the negative glow to form a cathodic plasma space having a parabolic section, thus forming a crystal-oriented thin film on the substrate surface.
摘要:
The invention provides an image display apparatus (1) comprising a lighting system (100); a LCD element (304); and an actuating means for varying the transmittance of the LCD element (304) according to image signals, wherein the LCD element (304) is designed such that when the angle of view with respect to a specified direction of a screen varies provided that the entire LCD element (304) is in a white display mode, transmittance varies such that it has peak values at viewing angles other than viewing angles in the vicinity of 0 degree, and wherein the lighting system (100) is designed such that the intensities of light beams emitted in the directions of the viewing angles in the vicinity of 0 degree are higher than the intensities of light beams emitted in the directions of the viewing angles at which the transmittance has a peak value.
摘要:
Disclosed is a liquid crystal display capable of ensuring brightness necessary for achieving satisfactory display by increasing ratio of light-emitting time to one frame period. A liquid crystal display is adapted to have a period (non-video signal write period) required for writing non-video signals different from video signals onto all the pixels before a video signal write period. In the non-video signal write period, the non-video signals are written onto the respective pixels, thereby starting response of the liquid crystal before the start of the video signal write period. In the non-video signal write period, a backlight is turned off, and thereby image degradation is prevented even when the non-video signals are written onto the respective pixels.
摘要:
The present invention relates to a liquid crystal element wherein a liquid crystal having a liquid crystal molecule is held between two substrates. An information for aligning a liquid crystal molecule 103 in two or more directions phasedly or gradually by applying voltage is provided for two substrates 101 and 102. The information for aligning is provided for the liquid crystal molecule 103 through irregularities in a wave plate and rubbing formed on a substrate.
摘要:
A spatial light modulator (SLM) providing effects light blocking of even strong incident light without reducing the photoelectric conversion efficiency, and a projector using said SLM, are disclosed. Said projector uses an SLM comprising a readout side glass substrate comprising a readout side transparent electrode; a light modulation layer for modulating incident light according to an applied voltage; a reflective electrode comprising plural electrode elements for applying a voltage to the light modulation layer, and reflecting the light passed by the readout side glass substrate, the readout side transparent electrode, and light modulation layer; a light blocking layer having plural holes; a drive electrode comprising plural electrode elements electrically connected through the holes in the light blocking layer to a corresponding electrode element of the reflective electrode; and voltage applying means for applying a voltage corresponding to the brightness of each pixel in the input image to each electrode element of the drive electrode.
摘要:
An active matrix type display apparatus is provided that is inexpensive, has less crosstalk, has no flickering and a brightness gradient, and is suitable for a large screen size. The display apparatus includes a plurality of pixel electrodes arranged in a matrix, switching elements (TFTs) connected thereto, scanning electrodes, video signal electrodes, common electrodes, and a counter electrode, wherein liquid crystal, for example, is interposed between the pixel electrodes and the counter electrode. Assuming that a gate-drain capacitance is Cgd, a common electrode-pixel electrode capacitance is Cst, and the total capacitance connected to the pixel electrodes is Ctot in this configuration, αgd and αst represented by αgd=Cgd/Ctot, αst=Cst/Ctot are set to be different values between a portion close to feeding ends in a screen and a portion away therefrom.