摘要:
A barrier film of a semiconductor device is formed. The present invention forms a middle layer having copper as a main component and including a predetermined quantity of diffusible metal with the addition of a reaction gas, by sputtering an alloy target having copper as a main component with the addition of a diffusible metal, while supplying a reaction gas including oxygen or nitrogen. Since contents of the diffusible metal are accurately controlled when heating the middle layer, the barrier film is certainly formed. Additionally, the reaction gas is added to the middle layer so that the reactivity of the diffusible metal becomes high; and accordingly, it is possible to form the barrier film at a heating temperature lower than the conventional art.
摘要:
A film-forming apparatus includes a heat generator exposed to a film-forming gas drawn into a chamber to generate film formation species. A film-forming gas supply system supplies the film-forming gas into the chamber. A control unit sets the heat generator in a non-heated state during a cleaning process that discharges a film formation residue from the chamber. A cleaning gas supplying system supplies a cleaning gas including ClF3 into the chamber. A temperature adjustment unit adjusts the chamber to a target temperature from 100° C. or higher to 200° C. or less in the cleaning process. A discharge system discharges a reaction product produced by a reaction between the film formation residue and the cleaning gas from the chamber.
摘要:
A Co film is formed by supplying cobalt alkylamidinate, and a combined gas containing H2 gas with at least one member selected from the group consisting of NH3, N2H4, NH(CH3)2, N2H3CH, and N2 as a reducing gas, or at least one gas selected from the group consisting of NH3, N2H4, NH(CH3)2, N2H3CH, and N2 as a reducing gas, on the surface of a base material, which consists of an SiO2 film or a barrier film serving as a primary layer. A Cu interconnection film is formed on the surface of the Co film.
摘要翻译:通过提供烷基酰胺钴化合物和含有H 2气体的组合气体与选自NH 3,N 2 H 4,NH(CH 3)2,N 2 H 3 CH和N 2中的至少一种作为还原气体形成Co膜,或至少 在由SiO 2膜或作为主层的阻挡膜构成的基材的表面上,选自由NH 3,N 2 H 4,NH(CH 3)2,N 2 H 3 CH和N 2组成的组中的一种气体作为还原气体 。 在Co膜的表面上形成Cu互连膜。
摘要:
A tantalum nitride film-forming method comprises the steps of introducing a raw gas consisting of a coordination compound constituted by an elemental tantalum (Ta) having a coordinated ligand represented by the general formula: N═(R,R′) (in the formula, R and R′ may be the same or different and each represents an alkyl group having 1 to 6 carbon atoms), and a halogen gas into a vacuum chamber; and reacting these components with one another on a substrate to thus form a surface adsorption film comprising a mono-atomic or multi (several)-atomic layer and composed of a compound represented by the following general formula: TaNx(Hal)y(R, R′)z (in the formula, Hal represents a halogen atom), then introducing radicals generated from an H atom-containing compound to thus remove Ta—N bonds present in the resulting compound through breakage thereof and remove, at the same time, the remaining R(R′) groups bonded to the N atoms present in the compound through the cleavage thereof and to thus form a tantalum nitride film rich in tantalum atoms. The resulting tantalum nitride film has a low resistance, low contents of C and N atoms, and a high compositional ratio: Ta/N, can ensure sufficiently high adherence to the distributing wire-forming film and can thus be useful as a barrier film. Moreover, tantalum particles are implanted in the resulting film according to the sputtering technique to thus further enrich the film with tantalum.
摘要:
A coating surface processing method includes forming a coating on the entire surface of a base body that has fine holes or fine grooves formed on the to-be-filmed surface, including the inner wall surfaces and the inner bottom surfaces of the holes or the grooves, and flattening the coating formed on the inner wall surfaces of the holes or the grooves by carrying out a plasma processing on the surface of the coating.
摘要:
A tantalum nitride film-forming method comprises the steps of introducing, into a vacuum chamber, a raw gas consisting of a coordination compound constituted by elemental Ta having a coordinated ligand represented by the general formula: N═(R,R′) (in the formula, R and R′ may be the same or different and each represents an alkyl group having 1 to 6 carbon atoms) to thus adsorb the gas on a substrate; then introducing an NH3 gas and then activated H radicals derived from a reactant gas into a vacuum chamber to thus remove the R(R′) groups bonded to the nitrogen atom present in the reaction product through cleavage, and to thus form a tantalum nitride film rich in tantalum atoms. The resulting tantalum nitride film has a low resistance, low contents of C and N atoms, and a high compositional ratio: Ta/N, can ensure sufficiently high adherence to the distributing wire-forming film and can thus be useful as a barrier film. Moreover, tantalum particles are implanted in the resulting film according to the sputtering technique to thus further enrich the film with tantalum.
摘要:
A tantalum nitride film-forming method comprises the steps of introducing a raw gas consisting of a coordination compound constituted by an elemental tantalum (Ta) having a coordinated ligand represented by the general formula: N═(R,R′) (in the formula, R and R′ may be the same or different and each represents an alkyl group having 1 to 6 carbon atoms), and a halogen gas into a vacuum chamber; and reacting these components with one another on a substrate to thus form a surface adsorption film comprising a mono-atomic or multi (several)-atomic layer and composed of a compound represented by the following general formula: TaNx(Hal)y(R, R′)z (in the formula, Hal represents a halogen atom), then introducing radicals generated from an H atom-containing compound to thus remove Ta—N bonds present in the resulting compound through breakage thereof and remove, at the same time, the remaining R(R′) groups bonded to the N atoms present in the compound through the cleavage thereof and to thus form a tantalum nitride film rich in tantalum atoms. The resulting tantalum nitride film has a low resistance, low contents of C and N atoms, and a high compositional ratio: Ta/N, can ensure sufficiently high adherence to the distributing wire-forming film and can thus be useful as a barrier film. Moreover, tantalum particles are implanted in the resulting film according to the sputtering technique to thus further enrich the film with tantalum.
摘要:
A particle collector trap for a vacuum evacuating system wherein there is provided a vessel formed of a double-wall cylinder and having an inlet conduit connected to a vacuum processing chamber and an outlet conduit connected to at least one vacuum pump, a passage for flowing gas is defined between the double walls of the vessel, and one of the double walls is heated and other wall is cooled so as to maintain a predetermined temperature difference therebetween.
摘要:
There is provided a film forming apparatus for forming a coating film on a surface of an object to be processed by using a sputtering method, the film forming apparatus including: a chamber for accommodating the object and a target serving as a base material for the coating film that are placed so as to face each other; an exhaust unit for reducing the pressure inside the chamber; a magnetic field generating unit for generating a magnetic field in front of the sputtering surface of the target; a direct current power supply for applying a negative direct current voltage to the target; a gas introducing unit for introducing a sputtering gas into the chamber; and a unit for preventing the entering of sputtered particles onto the object until the plasma generated between the target and the object reaches a stable state.
摘要:
A film formation apparatus includes: a chamber having an inner space in which both a body to be processed and a target are disposed so that the body to be processed and the target are opposed to each other, a first magnetic field generation section generating a magnetic field in the inner space to which the target is exposed; a second magnetic field generation section generating a perpendicular magnetic field so as to allow perpendicular magnetic lines of force thereof to pass between the target the body to be processed; and a third magnetic field generation section disposed at upstream side of the target as seen from the second magnetic field generation section.