摘要:
A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
摘要:
A wafer having a front face formed with a functional device is irradiated with laser light while positioning a light-converging point within the wafer with the rear face of the wafer acting as a laser light incident face, so as to generate multiphoton absorption, thereby forming a starting point region for cutting due to a molten processed region within the wafer along a line. Consequently, a fracture can be generated from the starting point region for cutting naturally or with a relatively small force, so as to reach the front face and rear face. Therefore, when an expansion film is attached to the rear face of the wafer by way of a die bonding resin layer after forming the starting point region for cutting and then expanded, the wafer and die bonding resin layer can be cut along the line.
摘要:
A laser beam machining method and a laser beam machining device capable of cutting a work without producing a fusing and a cracking out of a predetermined cutting line on the surface of the work, wherein a pulse laser beam is radiated on the predetermined cut line on the surface of the work under the conditions causing a multiple photon absorption and with a condensed point aligned to the inside of the work, and a modified area is formed inside the work along the predetermined determined cut line by moving the condensed point along the predetermined cut line, whereby the work can be cut with a rather small force by cracking the work along the predetermined cut line starting from the modified area and, because the pulse laser beam radiated is not almost absorbed onto the surface of the work, the surface is not fused even if the modified area is formed.
摘要:
A semiconductor substrate cutting method which can efficiently cut a semiconductor substrate having a front face formed with a functional device together with a die bonding resin layer is provided.A wafer 11 having a front face 3 formed with a functional device 15 is irradiated with laser light L while positioning a light-converging point P within the wafer 11 with the rear face 17 of the wafer 11 acting as a laser light incident face, so as to generate multiphoton absorption, thereby forming a starting point region for cutting 8 due to a molten processed region 13 within the wafer 11 along a line along which the substrate should be cut 5. Consequently, a fracture can be generated from the starting point region for cutting 8 naturally or with a relatively small force, so as to reach the front face 3 and rear face 17. Therefore, when an expansion film 21 is attached to the rear face 17 of the wafer 11 by way of a die bonding resin layer 23 after forming the starting point region for cutting 8 and then expanded, the wafer 11 and die bonding resin layer 23 can be cut along the line along which the substrate should be cut 5.
摘要:
A light-emitting device manufacturing method comprises the steps of irradiating a substrate 2 having a III-V compound semiconductor layer 17 formed on a front face 2a with laser light L1 along lines to cut 5a, 5b, while locating a converging point P1 within the sapphire substrate 2 and using a rear face 2b thereof as a laser light entrance surface, and thereby forming modified regions 7a, 7b along the lines 5a, 5b within the substrate 2; then forming a light-reflecting layer on the rear face 2b of the substrate 2; and thereafter extending fractures generated from the modified regions 7a, 7b acting as a start point in the thickness direction of the substrate 2, and thereby cutting the substrate 2, the semiconductor layer 17 and the light-reflecting layer along the lines 5a, 5b, and manufacturing a light-emitting device.
摘要:
A method of manufacturing high-heat-load equipment including a carbon material and a copper alloy material which are joined with each other includes; forming a titanium thin layer on a surface of the carbon material; positioning the carbon material so that the titanium thin layer is opposed to the copper alloy material while an interlayer is interposed between the carbon material and the copper alloy material; inserting a brazing material sheet into a space between the carbon material and the interlayer, as well as into a space between the interlayer and the copper alloy material, so as to prepare an assembly of the materials; and subjecting the assembly to a vacuum brazing process and further to an aging process.