摘要:
A method of self-cleaning a plasma reactor upon depositing a carbon-based film on a substrate a pre-selected number of times, includes: (i) exciting oxygen gas and/or nitrogen oxide gas to generate a plasma; and (ii) exposing to the plasma a carbon-based film accumulated on an upper electrode provided in the reactor and a carbon-based film accumulated on an inner wall of the reactor.
摘要:
A method of forming a hydrocarbon-containing polymer film on a semiconductor substrate by a capacitively-coupled plasma CVD apparatus. The method includes the steps of: vaporizing a hydrocarbon-containing liquid monomer (CαHβXγ, wherein α and β are natural numbers of 5 or more; γ is an integer including zero; X is O, N or F) having a boiling point of about 20° C. to about 350° C. which is not substituted by a vinyl group or an acetylene group; introducing the vaporized gas and CO2 gas or H2 gas into a CVD reaction chamber inside which a substrate is placed; and forming a hydrocarbon-containing polymer film on the substrate by plasma polymerization of the gas, thereby reducing extinction coefficient (k) at 193 nm and increasing mechanical hardness.
摘要翻译:通过电容耦合等离子体CVD装置在半导体衬底上形成含烃聚合物膜的方法。 该方法包括以下步骤:蒸发含烃液体单体(其中α和β为自然数) 5或更大;γ是包括零的整数; X是O,N或F),其沸点为约20℃至约350℃,其未被乙烯基或乙炔基取代; 将蒸发的气体和CO 2气体或H 2 H 2气体引入到其中放置基底的CVD反应室中; 并通过气体的等离子体聚合在基板上形成含烃聚合物膜,从而降低193nm处的消光系数(k)并提高机械硬度。
摘要:
A method forms a hydrocarbon-containing polymer film on a semiconductor substrate by a capacitively-coupled plasma CVD apparatus. The method includes the steps of: vaporizing a hydrocarbon-containing liquid monomer (CαHβXγ, wherein α and β are natural numbers of 5 or more; γ is an integer including zero; X is O, N or F) having a boiling point of about 20° C. to about 350° C.; introducing the vaporized gas into a CVD reaction chamber inside which a substrate is placed; and forming a hydrocarbon-containing polymer film on the substrate by plasma polymerization of the gas. The liquid monomer is unsaturated and has no benzene structure.
摘要:
A plasma CVD film-forming device forms a film on a semiconductor substrate in such as way that the film quality and film thickness of a thin film becomes uniform. The plasma CVD film-forming device to form a thin film on a semiconductor substrate includes a vacuum chamber, a showerhead positioned within the vacuum chamber, and a susceptor positioned substantially in parallel to and facing the showerhead within the vacuum chamber and on which susceptor the object to be processed is loaded and the central part of the showerhead and/or the susceptor constitutes a concave surface electrode.
摘要:
A hard film is formed on an insulation film formed on a semiconductor substrate by vaporizing a silicon-containing hydrocarbon compound to provide a source gas, introducing a reaction gas composed of the source gas and optionally an additive gas such as alcohol to a reaction space of a plasma CVD apparatus, and applying low-frequency RF power and high-frequency RF power. The silicon-containing hydrocarbon compound includes a cyclic Si-containing hydrocarbon compound and/or a linear Si-containing hydrocarbon compound, as a basal structure, with reactive groups for form oligomers using the basal structure. The residence time of the reaction gas in the reaction space is lengthened by reducing the total flow of the reaction gas in such a way as to form a siloxan polymer film with a low dielectric constant.
摘要:
An insulation film is formed on a semiconductor substrate by vaporizing a silicon-containing hydrocarbon compound to provide a source gas, introducing a reaction gas composed of the source gas and an additive gas such as an inert gas and oxidizing gas to a reaction space of a plasma CVD apparatus, and depositing a siloxan polymer film by plasma polymerization at a temperature of −50° C.-100° C. The residence time of the reaction gas in the reaction space is lengthened by reducing the total flow of the reaction gas in such a way as to form a siloxan polymer film with a low dielectric constant such as 2.5.
摘要:
A siloxan polymer insulation film has a dielectric constant of 3.1 or lower and has —SiR2O— repeating structural units with a C atom concentration of 20% or less. The siloxan polymer also has high thermal stability and high humidity-resistance. The siloxan polymer is formed by directly vaporizing a silicon-containing hydrocarbon compound of the formula Si&agr;O&agr;−1R2&agr;−&bgr;+2(OCnH2n+1)&bgr; wherein &agr; is an integer of 1-3, &bgr; is 2, n is an integer of 1-3, and R is C1-6 hydrocarbon attached to Si, and then introducing the vaporized compound with an oxidizing agent to the reaction chamber of the plasma CVD apparatus. The residence time of the source gas is lengthened by reducing the total flow of the reaction gas, in such a way as to form a siloxan polymer film having a micropore porous structure with low dielectric constant.
摘要:
A method forms a hydrocarbon-containing polymer film on a semiconductor substrate by a capacitively-coupled plasma CVD apparatus. The method includes the steps of: vaporizing a hydrocarbon-containing liquid monomer (CαHβXγ, wherein α and β are natural numbers of 5 or more; γ is an integer including zero; X is O, N or F) having a boiling point of about 20° C. to about 350° C.; introducing the vaporized gas into a CVD reaction chamber inside which a substrate is placed; and forming a hydrocarbon-containing polymer film on the substrate by plasma polymerization of the gas.
摘要:
A dual-chamber plasma processing apparatus comprises two reaction spaces which are equipped with different gas inlet lines and different RF systems. Each reaction space is provided with an RF wave entry path and an RF wave return path to supply RF power from an RF power source and return RF power to the same RF power source.
摘要:
A method of forming a hydrocarbon-containing polymer film on a semiconductor substrate by a capacitively-coupled plasma CVD apparatus. The method includes the steps of: vaporizing a hydrocarbon-containing liquid monomer (CαHβXγ, wherein α and β are natural numbers of 5 or more; γ is an integer including zero; X is O, N or F) having a boiling point of about 20° C. to about 350° C. which is not substituted by a vinyl group or an acetylene group; introducing the vaporized gas and CO2 gas or H2 gas into a CVD reaction chamber inside which a substrate is placed; and forming a hydrocarbon-containing polymer film on the substrate by plasma polymerization of the gas, thereby reducing extinction coefficient (k) at 193 nm and increasing mechanical hardness.
摘要翻译:通过电容耦合等离子体CVD装置在半导体衬底上形成含烃聚合物膜的方法。 该方法包括以下步骤:蒸发含烃液体单体(其中α和β为自然数) 5或更大;γ是包括零的整数; X是O,N或F),其沸点为约20℃至约350℃,其未被乙烯基或乙炔基取代; 将蒸发的气体和CO 2气体或H 2 H 2气体引入到其中放置基底的CVD反应室中; 并通过气体的等离子体聚合在基板上形成含烃聚合物膜,从而降低193nm处的消光系数(k)并提高机械硬度。