摘要:
A fractionating and refining device includes a solution sending flow path for supplying a solution including a fractionated target component from a tip end thereof, a gas supply flow path for supplying gas from a tip end thereof, a collecting vessel, and a warming mechanism for warming the collecting vessel to such a temperature as to facilitate evaporation of a solvent in the solution in the vessel. The collecting vessel includes a vessel main body having a bottom and a lid which closes an opening portion of the vessel main body and which can be opened and closed. The lid includes a solution inlet to which the tip end portion of the solution sending flow path is connected and through which the solution from the solution sending flow path is supplied into the vessel main body, gas inlets to which the tip end portion of the gas supply flow path is connected and through which the gas from the gas supply flow path is supplied into the vessel main body, and gas discharge ports connecting an inside and an outside of the vessel main body.
摘要:
A fractionating and refining device includes a solution sending flow path for supplying a solution, including a fractionated target component, a gas supply flow path, a collecting vessel, a warming mechanism for warming the collecting vessel, and a probe formed by integrating tip end portions of the solution sending flow path and the gas supply flow path with each other. A lid of the vessel includes a solution inlet to which the tip end portion of the solution sending flow path is connected, gas inlets to which the tip end portion of the gas supply flow path is connected, and gas discharge ports connecting an inside and an outside of a vessel main body of the vessel.
摘要:
The present invention provides a liquid crystal panel and a liquid crystal display that give a wide viewing angle. The present invention includes a first substrate, a second electrode opposed to the first substrate, and a liquid crystal layer interposed between the first substrate and the second substrate. The first substrate includes a first electrode and a second electrode. The second substrate includes a third electrode. The liquid crystal layer is driven by an electric field generated at least by the first electrode, the second electrode, and the third electrode. The liquid crystal panel includes within a pixel a plurality of regions that are supplied with different voltages to drive the liquid crystal layer.
摘要:
In a trap flow path, two diluents are supplied by solvent pumps that can respectively determine the flow rates independently. One of the diluents is allowed to pass through a fraction loop so as to direct a fractioned component(s) held in the fraction loop to a trap column together with a mobile phase. The other diluent is allowed to join with a flow path that has passed through the fraction loop on the downstream side of the fraction loop, and flows to the trap column while diluting the mobile phase from the flow path. In the trap column, the sample component(s) is condensed while being trapped therein.
摘要:
A tip portion of a probe has a triple tube structure in which a fused silica capillary on the innermost side, a capillary made of FEP outside the fused silica capillary, and a stainless pipe on the outermost side are disposed coaxially. An eluate from a liquid chromatograph flows through the innermost flow passage, a matrix solution flows through the flow passage between the fused silica capillary and the FEP capillary, and a rinsing solution or air flows through the flow passage between the FEP capillary and the pipe.
摘要:
The present invention is directed to reduce the dead volume in a flow path with trap functions. A flow path switching valve 1 is provided, which includes a rotor, i.e., rotor 3, and a housing top 9 having four ports 7a-7d connected to external flow paths, wherein two ports used for a mobile phase for analyzing are an inlet port 7a and an outlet port 7b, and the other two ports used for a mobile phase for condensing are an inlet port 7c and an outlet port 7d. In the rotor 3, two circular arc-shaped rotor trenches 11a, 11b for communicating two ports are formed at positions corresponding to the ports 7a-7d. The rotor trench 11b is filled with an adsorbent.
摘要:
A two-dimensional liquid chromatograph includes a first-dimension separation channel for guiding a sample injected from a sample injection part to a first-dimension analysis column using a first-dimension analysis mobile phase for separation; two trap columns; an analysis channel for guiding components retained in the trap columns to a second-dimension analysis column using a second-dimension analysis mobile phase for analysis; and a channel switching mechanism. The switching mechanism connects the first-dimension separation channel to one of the trap columns and connecting the analysis channel to the other of the trap columns, and also switches connections between the trap columns and the channels.
摘要:
A distal end portion of a probe has a multi-pipe structure, in which an effluent solution from a high speed liquid chromatography passes through an innermost flow passage, a matrix solution through an outer flow passage, and the air through an outermost flow passage. A distal end of the outermost pipe extends 1.2 mm longer than the distal end of the inner duplex tube to form a liquid reservoir. When dropping a liquid droplet from the distal end of the probe, the air is blown out to expel the liquid gathered in the liquid reservoir to be dropped.
摘要:
The probe has a triple tube structure, in which an eluate from a liquid chromatograph flows through an innermost flow passage, a matrix solution flows through a flow passage outside the innermost flow passage, and the air or acetone flows through an outermost flow passage. Before analysis, acetone is flowed to rinse the matrix compound deposited in the previous analysis and clean the tip portion of the probe, and then the air is flowed to evaporate the rinsing solution.
摘要:
In a preferred embodiment, a sample container storage part for storing a number of sample containers S, a nozzle for dropping a sample component separated and supplied by an LC and an additive liquid such as digestive fluid supplied from another liquid supplying part to the sample container S, a carrying mechanism for carrying and positioning the sample container at an arbitrary position under the nozzle, and a second nozzle, serving as a suction/injection mechanism, for sucking in the fractionated/collected sample component and injecting the sample component to another LC. The carrying mechanism provides a rotation mechanism. The carrying mechanism rotates over 180 degrees and carries the sample container S completed with fractionating/collecting to the position of the second nozzle, and the sample is sucked in by the second nozzle and injected to the LC of next stage.