摘要:
Disclosed is a user equipment (UE) apparatus, and method to facilitate beamforming between at least one eNB and at least one UE, comprising the at least one UE including an indication in a message from the UE to the at least one eNB of a type of receiver available for use by the UE to receive a return message from the eNB. There is also disclosed a method in an eNB to facilitate beamforming, and a UE and eNB arranged to carry out the described methods.
摘要:
Methods, apparatuses, and systems are described related to interference averaging to generate feedback information. In embodiments, an evolved Node B (eNB) may transmit an feedback management message to a user equipment (UE) that defines one or more PRB sets. The PRB sets may include at least one PRB of the channel. The UE may average interference measurements within the PRB set and may generate channel state information (CSI) feedback for the PRB set based on the average interference measurement. The UE may transmit the CSI feedback to the eNB.
摘要:
Embodiments of the present disclosure describe systems and methods for mitigating interference in wireless networks. Various embodiments may include signaling of quasi co-location and resource element mapping of an interfering physical downlink shared channel. Other embodiments may be described and/or claimed.
摘要:
Techniques for resource block allocation in a multi-user MIMO High Efficiency WLAN system are provided. Specifically, teachings that when taken alone or together, provide a device or a group of devices with an improved resource allocation for the reduction of usable tone waste, are presented. The present disclosure includes a system that provides a user with a technique allocating data tones prior to the encapsulation unit or overhead tones on a resource block unit. Further, the total allocated bandwidth can be reduced prior resource allocation to overcome modulation and coding scheme downgrading caused by severe puncturing. Alternatively, only band edge basic resource blocks are reduced to account for overhead tones which largely reside on band edges.
摘要:
This disclosure describes methods, apparatus, and systems related to early bit indication system. A device may identify a high efficiency frame in accordance with a high efficiency communication standard, received from a first device, the high efficiency frame including at least in part a legacy signal field and a high efficiency signal field. The device may determine a length field included in the legacy signal field. The device may determine one or more bits included in the length field. The device may determine a repeated high efficiency signal field based at least in part on the one or more bits.
摘要:
In embodiments, apparatuses, methods, and storage media may be described for reducing the overhead associated with the transmission of channel training signals from an eNodeB (eNB) of a wireless network. Specifically, the eNB may receive feedback from a user equipment (UE) regarding the received signal energy of a first and second beamformed signal produced with a first and second beamforming vector, respectively. The eNB may identify, based on the feedback of the received signal energy, a signal subspace and a null subspace. The eNB may then transmit a channel training signal to the signal subspace.
摘要:
This disclosure describes systems, methods, and devices related to truncated channel state information (CSI) feedback. A device may establish a communication link with a station device. The device may identify a feedback frame received from the station device, wherein the feedback frame comprises information associated with channel state information (CSI). The device may identify the feedback frame as one or more feedback samples.
摘要:
Technology for mapping an enhanced physical downlink control channel to physical resource blocks in a radio frame is disclosed. One method comprises mapping modulated symbols in the ePDCCH to at least one control channel element. The at least one control channel element may be mapped to resource elements located in a plurality of distributed physical resource blocks in a subframe, wherein each resource block is in a distributed resource block group and is separated by at least one additional resource block in the subframe. The mapping may also be to resource elements distributed in a single resource block in the subframe, wherein the control channel element is mapped to be distributed in frequency and time relative to other mapped resource elements in the single resource block and the single resource block belongs to a localized resource block group.