Abstract:
Wireless link management techniques for wireless charging systems are described. According to some such techniques, a power receiving unit (PRU) may be configured to observe a rectifier voltage while operating in a charge complete connected (CCC) mode according to which it possesses a wireless connection with a power transmitting unit (PTU) operating in a power save state. In various embodiments, the PRU may be configured to observe the rectifier voltage in an attempt to detect power beacons generated by the PTU. In some embodiments, the PRU may be configured to maintain the wireless connection if it detects power beacons, and to terminate the wireless connection if it does not detect any beacons. Other embodiments are described and claimed.
Abstract:
Briefly, in accordance with one or more embodiments, a codebook for wireless transmissions may be generated by dividing a codebook into a fixed set of codewords and an adaptive set of codewords. The adaptive set of codewords may be scaled to cluster together and then rotated to be centered or nearly centered about a target. The adaptive set of codewords may then be merged with the fixed set of codewords to provide a hybrid codebook. A codeword from the hybrid codebook may be selected for precoding a transmission to provide a minimum, or nearly minimum, quantization error.
Abstract:
Technology to provide hybrid beamforming feedback is disclosed. In an example, a user equipment (UE) can include computer circuitry configured to: Receive a reference signal (RS) from a node; calculate an optimal channel direction from the RS; calculate an optimal signal-to-interference-plus-noise ratio (SINR) for the optimal channel direction, where the optimal SINR is conditionally calculated with an intra-cell interference component or calculated without the intra-cell interference component based on a feedback configuration; and transmit the optimal channel direction and the optimal SINR to the node.
Abstract:
In various embodiments, a first base station may communicate with a first user equipment (UE) over a wireless communication channel. The first base station may receive an interference indication from a second base station communicating with a second UE on the same wireless communication channel. In response to the interference indication, the first base station may transmit a request to the first UE for the first UE to send feedback information associated with the wireless communication channel to the first base station for one or more transmission ranks specified by the first base station. The first UE may determine the requested feedback information and transmit the determined feedback information to the first base station. Thereafter, the first base station may reduce a transmission rank of ongoing transmissions to the UE based on the interference indication and the determined feedback information.
Abstract:
In accordance with some embodiments, uplink control information, including a channel quality index, may be transmitted using at least two layers. As a result, more information can be provided for use in situations, such as those involving carrier aggregation, where information for a large number of component carriers must all be provided on one primary component carrier.
Abstract:
The present invention relates to a channel state transmission method using time domain coefficient quantization. A terminal measures channel information in the time domain and transmits it to a base station. In this instance, a multipath frequency selective fading channel is displayed in a tapped delay line format configured with a per-path path delay value and a path gain in the time domain, differentiates a quantization level for each path gain for more efficient transmission, quantizes the same, and transmits it to a transmitter. Therefore, while the amount of bandwidths required for transmitting state information from the terminal to the base station is reduced, the base station can efficiently acquire channel state information on the entire bandwidths. Also, the base station transmits signals to many terminals through beamforming by using the acquired reliable channel state information, thereby increasing the terminal's signal receiving performance.
Abstract:
A system for updating channel state information may include a base station wirelessly sending a reference signal to a user device. The bases station may receive channel state information based on the reference signal. Then, the bases station may determine a number of transport blocks to enable, a number of layers to use, and an order of modulation for each transport block based on the channel state information. The bases station may then receive subsequent channel state information from the user device using the determined parameters.
Abstract:
A hybrid digital and analog beamforming device for a node operable with an antenna array is disclosed. In an example, the hybrid digital and analog beamforming device can include computer circuitry configured to: Segment antenna elements of an antenna array into at least two groups of antenna elements; map antenna ports for transmission chains to one group of the antenna elements; constrain digital precoding weights for a digital precoder for the antenna elements, where the digital precoding weight in dudes a digital phase and amplitude; and determine analog precoding weights for an analog precoder for the antenna elements, where the analog precoding weight includes an analog phase.
Abstract:
In embodiments, apparatuses, methods, and storage media may be described for reducing the overhead associated with the transmission of channel training signals from an eNodeB (eNB) of a wireless network. Specifically, the eNB may receive feedback from a user equipment (UE) regarding the received signal energy of a first and second beamformed signal produced with a first and second beamforming vector, respectively. The eNB may identify, based on the feedback of the received signal energy, a signal subspace and a null subspace. The eNB may then transmit a channel training signal to the signal subspace.
Abstract:
A technology for an enhanced node B (eNode B) in a cellular network that is operable to determine downtilt using full dimensional (FD) multiple-input multiple-output (MIMO). A plurality of orthogonal frequency division multiple access (OFDMA) signals can be transmitted, wherein each transmitted OFDMA signal is transmitted with a selected downtilt angle from a two dimensional antenna array of the eNode B. Reference signal received power (RSRP) feedback information can be received from a UE for each of transmitted OFDMA signals at the selected downtilt angles. Received signal strength indicator (RSSI) feedback information can be received from the UE. A reference signal received quality (RSRQ) can be calculated for each of the selected antennas angles using the RSRP feedback information and the RSSI feedback information. A downtilt angle can be selected for transmitting data from the eNode B with a highest signal to interference plus noise ratio (SINR).