摘要:
A semiconductor light emitting device has a light emitting layer forming portion formed on the substrate and having an n-type layer and a p-type layer to provide a light emitting layer. A window layer is formed on a surface side of the light emitting layer forming portion. The window layer is formed of AlyGal−yAs (0.6≦y≦0.8) auto-doped in a carrier concentration of 5×1018-3×1019 cm−3. The resulting semiconductor light emitting device is free of degradation in crystallinity due to p-type impurity doping, thereby provide a high light emitting efficiency and brightness without encountering device degradation or damage.
摘要翻译:半导体发光器件具有形成在衬底上并具有n型层和p型层以提供发光层的发光层形成部分。 在发光层形成部分的表面侧上形成窗口层。 窗口层由载流子浓度为5×10 18 -3×10 19 cm -3自动掺杂的AllyGal-yAs(0.6 <= y <= 0.8)形成。 所得到的半导体发光器件由于p型杂质掺杂而不会降低结晶度,从而提供高的发光效率和亮度,而不会遇到器件劣化或损坏。
摘要:
An active layer is sandwiched between the n-type cladding layer and the p-type cladding layer, forming a light emitting layer forming portion. The n-type cladding layer has a carrier concentration of non-doped or less than 5.times.10.sup.17 cm.sup.-3 on a side thereof close to the active layer, and a carrier concentration of 7.times.10.sup.17 -7.times.10.sup.18 cm .sup.-3 on a side thereof remote from the active layer. With this structure, it is possible to suppress to a minimum the deterioration of crystallinity at an interface between the active layer and the n-type cladding layer as well as in the active layer. thereby providing a semiconductor light emitting device high in brightness.
摘要翻译:有源层被夹在n型覆层和p型覆层之间,形成发光层形成部分。 n型包层在其接近有源层的一侧上具有非掺杂或小于5×10 17 cm -3的载流子浓度,并且其远离活性物质的一侧的载流子浓度为7×10 17 -7×10 18 cm -3 层。 利用这种结构,可以最大限度地抑制有源层和n型包层之间以及活性层中的界面处的结晶度的劣化。 从而提供高亮度的半导体发光器件。
摘要:
A light emitting layer forming portion (9) comprising InGaAlP based compound semiconductor and forming a light emitting layer is deposited on an n-type GaAs substrate (1), a p-type current dispersion layer (5) comprising AlGaAs based compound semiconductor is provided on a surface of the light emitting layer forming portion (9), a p-side electrode (7) is provided on a portion of a surface of the current dispersion layer (5) through a contact layer (6) comprising p-type GaAs, and an n-side electrode (8) is provided on a back. surface of the GaAs substrate (1). Vickers' hardness of the current dispersion layer (5) comprising AlGaAs is 700 or higher. As a result, at the time of handling for mounting, or wire bonding, a fracture or a crack is not generated in the LED chip, and it is possible to enhance the yield of assembling steps.
摘要:
A semiconductor light emitting device is disclosed. An emitting layer forming portion for forming an emitting layer made of a compound semiconductor of AlGaInP group or AlGaAs group including a n-type layer, an active layer and a p-type layer laid one on another is formed on a GaAs substrate. Further, a current diffusion layer of GaP is formed on the front surface of the emitting layer forming portion. The p-type layer between the active layer and the current diffusion layer is formed to the thickness of not less than about 2 &mgr;m, or the current diffusion layer is formed to the thickness of about 3 to 7 &mgr;m. As a result, the semiconductor light emitting device of a high luminance is thus realized, in which the distortion due to the lattice mismatch has no effect on the emitting layer.
摘要:
A light emitting layer forming portion is formed of an AlGaInP-based compound semiconductor and having an n-type layer and a p-type layer to form a light emitting layer on the substrate. A large bandgap energy semiconductor layer is provided on a surface of the light emitting layer forming portion to constitute a window layer. A buffer layer is interposed between the light emitting layer forming portion and the large bandgap energy semiconductor layer to relieve lattice mismatch of between the light emitting layer forming portion and the large bandgap energy semiconductor layer. The interposition of this buffer layer provides a light emitting device that is high in light emitting efficiency and excellent in electrical characteristics without degrading the film property of the window layer.
摘要:
A semiconductor light emitting device has a light emitting layer forming portion formed on the substrate and having an n-type layer and a p-type layer to provide a light emitting layer. A window layer is formed on a surface side of the light emitting layer forming portion. The window layer is formed of AlyGal-yAs (0.6.ltoreq.y.ltoreq.0.8) auto-doped in a carrier concentration of 5.times.10.sup.18 -3.times.10.sup.19 cm.sup.-3. The resulting semiconductor light emitting device is free of degradation in crystallinity due to p-type impurity doping, thereby provide a high light emitting efficiency and brightness without encountering device degradation or damage.
摘要:
A semiconductor light emitting device includes a substrate, an n-type layer formed of gallium-nitride based compound semiconductor formed on the substrate, and a p-type layer formed of gallium-nitride based compound semiconductor formed on the substrate. Semiconductor overlying layers are constituted by the n-type layer and the p-type layer on the substrate. A light emitting layer is formed together with the n-type and p-type layers in the semiconductor overlying layers to emit light. At least one of the n-type layer and the p-type layer is formed by three or more overlying sublayers including a sublayer of AlyGa1-yN (0
摘要:
Deposited on a wafer-like substrate for forming a plurality of light emitting device chips is a semiconductor layer laminate with a different property from that of the substrate. Then, electrodes are provided on and in electric connection with a top semiconductor layer of a first conductivity type of the semiconductor layer laminate, and on and in electric connection with a semiconductor layer of a second conductivity type, exposed by locally etching the semiconductor layer laminate, in association with the individual chips. Then, the semiconductor layer laminate is etched at boundary portions between the chips to expose the substrate, and the substrate is broken at the exposed portions into the chips. As the semiconductor layer laminate is etched out at the boundary portions between the chips before breaking the wafer, breaking can be facilitated without damaging the light emitting portions of the semiconductor layer laminate. This helps provide high-performance semiconductor light emitting devices.
摘要:
A semiconductor light emitting device has semiconductor layers including a first conductivity type semiconductor layer and a second conductivity type semiconductor layer formed on a substrate. A first electrode is formed in electrical connection with the first conductivity type semiconductor layer on a surface side of the semiconductor layers. The second conductivity type semiconductor layer is exposed by partly etch-removing an end portion of the semiconductor layers. A second electrode is provided in electrical connection with the exposed second conductivity type layer. The first and second electrodes are formed such that the electrodes are in parallel, in plan form, with each other at opposite portions thereof. As a result, the current path is constant in electric resistance, providing a semiconductor light emitting device that is constant in brightness, long in service life and high in brightness.
摘要:
A semiconductor layered portion is formed of a gallium-nitride semiconductor overlying a substrate and having an n-type layer and a p-type layer to form a light emitting layer having a pn junction or a doublehetero junction. A gradient layer is provided at an interfacial portion between an lower layer and an upper layer of the semiconductor layered portion, wherein the gradient layer has a composition varied from a composition from said lower layer to a composition of the upper layer. With this structure, a semiconductor light emitting device which is excellent in light emitting efficiency is provided by reducing crystal lattice mismatch between semiconductor layers formed different in lattice constant on a substrate.