摘要:
An n-channel device (10) and a p-channel device (11) are formed from a single epitaxial silicon layer (60,61). During the deposition of the single epitaxial silicon layer (60,61), dopants are added to the epitaxial reaction chamber and subsequently changed to define a drain region (24,33), a channel region (27,34), and a source region (30,35). The dopant concentration is modified during the formation of the channel region (27,34) to create a doping profile (50). The doping profile (50) has a first profile (51) that is constant and a second profile (52) that changes.
摘要:
An n-channel device (10) and a p-channel device (11) are formed from a single epitaxial silicon layer (60,61). During the deposition of the single epitaxial silicon layer (60,61), dopants are added to the epitaxial reaction chamber and subsequently changed to define a drain region (24,33), a channel region (27,34), and a source region (30,35). The dopant concentration is modified during the formation of the channel region (27,34) to create a doping profile (50). The doping profile (50) has a first profile (51) that is constant and a second profile (52) that changes.
摘要:
An n-channel device (10) and a p-channel device (11) are formed from a single epitaxial silicon layer (60,61). During the deposition of the single epitaxial silicon layer (60,61), dopants are added to the epitaxial reaction chamber and subsequently changed to define a drain region (24,33), a channel region (27,34), and a source region (30,35). The dopant concentration is modified during the formation of the channel region (27,34) to create a doping profile (50). The doping profile (50) has a first profile (51) that is constant and a second profile (52) that changes.
摘要:
A method and structure for a CMOS device comprises depositing a silicon over insulator (SOI) wafer over a buried oxide (BOX) substrate, wherein the SOI wafer has a predetermined thickness; forming a gate dielectric over the SOI wafer, forming a shallow trench isolation (STI) region over the BOX substrate, wherein the STI region is configured to have a generally rounded corner; forming a gate structure over the gate dielectric; depositing an implant layer over the SOI wafer; performing one of N-type and P-type dopant implantations in the SOI wafer and the implant layer; and hearing the device to form source and drain regions from the implant layer and the SOI wafer, wherein the source and drain regions have a thickness greater than the predetermined thickness of the SOI wafer, wherein the gate dielectric is positioned lower than the STI region.
摘要:
Disclosed is a method comprising providing a silicon surface with an underlying insulator layer, providing a plurality of gates adjacent to source/drain regions, growing source/drains between the said gates such that the source/drains are thicker in regions of larger gate-to-gate pitch, and doping the source/drains with one or more dopants such that the dopants abut the underlying insulator layer.
摘要:
A method of forming an isolation oxide (30) on a silicon-on-insulator (SOI) substrate (21) includes disposing a mask layer (26, 27) over a region of a silicon layer (24) of the SOI substrate (21). The isolation oxide (30) is grown in a different region (28) of the silicon layer (24). The isolation oxide (30) is grown to a depth (32) within the silicon layer (24) of less than or equal to a thickness (29) of the silicon layer (24). After removing the mask layer (26, 27), the isolation oxide (30) is further grown in the different region (28) of the silicon layer (24) such that the isolation oxide (30) is coupled to a buried electrically insulating layer (23) within the SOI substrate (21). The buried electrically insulating layer (23) and the isolation oxide (30) electrically isolate an active region (43) of a semiconductor device (20).
摘要:
A method and structure for a CMOS device comprises depositing a silicon over insulator (SOI) wafer over a buried oxide (BOX) substrate, wherein the SOI wafer has a predetermined thickness; forming a gate dielectric over the SOI wafer; forming a shallow trench isolation (STI) region over the BOX substrate, wherein the STI region is configured to have a generally rounded corner; forming a gate structure over the gate dielectric; depositing an implant layer over the SOI wafer; performing one of N-type and P-type dopant implantations in the SOI wafer and the implant layer; and heating the device to form source and drain regions from the implant layer and the SOI wafer, wherein the source and drain regions have a thickness greater than the predetermined thickness of the SOI wafer, wherein the gate dielectric is positioned lower than the STI region.
摘要:
A process for fabricating an MOS device having a highly-localized halo region includes the formation of a first halo region at a first surface of a silicon substrate, and a second halo region at a second surface of the silicon substrate. The second surface of the silicon substrate is formed by anisotropically etching the first surface of the silicon substrate to remove a portion of the material from the substrate. Both the first and second halo regions are formed by low-energy ion implantation. For the fabrication of an n-channel device, boron is implanted at an energy of no more than about 1 keV. Upon implantation and a subsequent annealing process, the first and second halo regions form a continuous halo region within the semiconductor substrate.
摘要:
In raised source/drain CMOS processing, the prior art problem of lateral epi growth on the gate stack interfering physically with the raised S/D structures and producing device characteristics that vary along the length of the gate and the problem of overetch of the STI oxide during the preclean step is solved by using a sacrificial nitride layer to block both the STI region and the gate stack, together with a process sequence in which the halo and extension implants are performed after the S/D implant anneal.
摘要:
A semiconductor device is fabricated by implanting into a semiconductor substrate non-doping ions at a tilt angle of at least about 10° to laterally extend preamorphization of the substrate portion and then implanting into the substrate dopants for providing source/drain extensions or halo doping or both.