Abstract:
A method for producing a protein polymer fiber, the method comprising providing a liquid protein solution in a container for liquid, and repeatedly moving the liquid surface in the container back and forth between a first and a second position. Said movement of the liquid surface is such that the protein polymer solution is allowed to form a film in the interface between the liquid surface of the liquid protein solution and a surrounding fluid. The movement of the liquid surface being performed by respectively raising and lowering the liquid surface relative to the container or by moving an object extending through the liquid surface of the liquid protein solution. Also, a device for performing said method.
Abstract:
A method for coating a solid surface with a recombinant spider silk protein capable of forming polymeric, solid structures is provided. The method is comprising the following steps: exposing the solid surface to an aqueous solution of the recombinant spider silk protein and thereby forming a surface layer of the recombinant spider silk protein adsorbed on the solid surface without formation of covalent bonds between the recombinant spider silk protein and the solid surface; and further exposing the surface layer of the solid surface to an aqueous solution of the recombinant spider silk protein and thereby forming an assembled silk structure layer of the recombinant spider silk protein on the surface layer; wherein the method does not include drying-in of spider silk protein.
Abstract:
A protein comprising a moiety of 100-160 amino acid residues having at least 70% identity with the N-terminal (NT) fragment of a spider silk protein, wherein the amino acid residue corresponding to position 40 in NT is selected from the group consisting of Lys, Arg and His; and wherein the amino acid residue corresponding to position 65 in NT is selected from the group consisting of Asp and Glu, is useful as a moiety in a fusion protein for enhancing the solubility of another moiety in the fusion protein, which is a desired protein or polypeptide.
Abstract:
A method of producing a desired non-spidroin protein or polypeptide is comprising the steps of expressing in a suitable host a fusion protein, obtaining a mixture containing the fusion protein, and optionally isolating the fusion protein. The fusion protein is comprising at least one solubility-enhancing moiety which is derived from the N-terminal (NT) fragment of a spider silk protein. It is further comprising at least one moiety which is a desired non-spidroin protein or polypeptide. Each solubility-enhancing moiety is linked directly or indirectly to the desired protein or polypeptide moiety.
Abstract:
A method for coating a solid surface with a recombinant spider silk protein capable of forming polymeric, solid structures is provided. The method is comprising the following steps: exposing the solid surface to an aqueous solution of the recombinant spider silk protein and thereby forming a surface layer of the recombinant spider silk protein adsorbed on the solid surface without formation of covalent bonds between the recombinant spider silk protein and the solid surface; and further exposing the surface layer of the solid surface to an aqueous solution of the recombinant spider silk protein and thereby forming an assembled silk structure layer of the recombinant spider silk protein on the surface layer; wherein the method does not include drying-in of spider silk protein.
Abstract:
A recombinant fusion protein is comprising a spider silk fragment and a cyclic RGD cell-binding motif with selectivity for integrins, such as for α5β1 integrins. The fusion protein is useful as a cell scaffold material and for the cultivation of cells displaying integrins on their cell surface.
Abstract:
A method of producing a desired non-spidroin protein or polypeptide is comprising the steps of expressing in a suitable host a fusion protein, obtaining a mixture containing the fusion protein, and optionally isolating the fusion protein. The fusion protein is comprising at least one solubility-enhancing moiety which is derived from the N-terminal (NT) fragment of a spider silk protein. It is further comprising at least one moiety which is a desired non-spidroin protein or polypeptide. Each solubility-enhancing moiety is linked directly or indirectly to the desired protein or polypeptide moiety.
Abstract:
A method and a combination for the cultivation of eukaryotic cells are provided, as well as a method for preparation of eukaryotic cells. The methods comprise providing a sample of eukaryotic cells to be cultured, applying said sample to a cell scaffold material; and maintaining said cell scaffold material having cells applied thereto under conditions suitable for cell culture. The combination comprises eukaryotic cells and a cell scaffold material. The cell scaffold material comprises a polymer of a spider silk protein.
Abstract:
The invention provides an isolated major ampullate spidroin protein, which consists of from 150 to 420 amino acid residues and is defined by the formula REP-CT. REP is a repetitive, N-terminally derived protein fragment having from 80 to 300 amino acid residues. CT is a C-terminally derived protein fragment having from 70 to 120 amino acid residues. The invention further provides an isolated fusion protein consisting of a first protein fragment, which is a major ampullate spidroin protein, and a second protein fragment comprising a fusion partner and a cleavage agent recognition site. The first protein fragment is coupled via said cleavage agent recognition site to the fusion partner. The invention also provides a method of producing a major ampullate spidroin protein and polymers thereof.
Abstract:
The invention provides an isolated major ampullate spidroin protein, which consists of from 150 to 420 amino acid residues and is defined by the formula KEP-CT. KEP is a repetitive, N-terminally derived protein fragment having from 80 to 300 amino acid residues. CT is a C-terminally derived protein fragment having from 70 to 120 amino acid residues. The invention further provides an isolated fusion protein consisting of a first protein fragment, which is a major ampullate spidroin protein, and a second protein fragment comprising a fusion partner and a cleavage agent recognition site. The first protein fragment is coupled via said cleavage agent recognition site to the fusion partner. The invention also provides a method of producing a major ampullate spidroin protein and polymers thereof.