摘要:
A method for manufacturing a fin-trench capacitor is disclosed. The method comprises the steps of: forming a plurality of alternating oxide and nitride layers including a top oxide layer, wherein said nitride layers are sandwiched between said oxide layers; forming a storage node contact opening in said plurality of alternating oxide and nitride layers, stopping at said landing pad; removing a portion of said nitride layers along sidewalls of said contract opening; forming a polysilicon layer over said top oxide layer and conformally along said sidewalls of said contact opening; depositing a photoresist layer into said contact opening; removing a portion of said polysilicon layer on top of said top oxide layer; forming a dielectric layer over said top oxide layer and conformally on top of said polysilicon layer along said sidewalls of said contact opening; forming a top conductive layer over said dielectric layer and in said contact opening.
摘要:
A method for manufacturing a metal-insulator-metal capacitor on a substrate is disclosed. The method comprises the steps of: forming a first dielectric layer onto said substrate; patterning and etching said first dielectric layer to form a contact opening; forming a first metal layer onto said first dielectric layer and into said contact opening; forming a barrier layer onto said first metal layer; forming a second dielectric layer onto said barrier layer; forming a discrete HSG layer onto said second dielectric layer; etching said second dielectric layer by using said HSG layer as a mask; stripping said HSG layer; etching said barrier layer and said first metal layer by using a remaining portion of said second dielectric layer as a mask; stripping said remaining portion of said second dielectric layer; patterning and etching a remaining portion of said barrier layer and a remaining portion of said first metal layer; forming a third dielectric layer over said barrier layer, said first metal layer and said first dielectric layer; and forming a second metal layer over said third dielectric layer.
摘要:
A transistor formed in a semiconductor substrate having improved ESD protection is disclosed. The transistor includes a first ESD implant formed underneath the source region and the drain region of the transistor. The first ESD implant has the same impurity type as the source region and the drain region. Further, a second ESD implant is formed underneath the first ESD implant, the second ESD implant having an impurity type opposite to that of said first ESD implant. The second ESD implant also is spaced apart vertically from the first ESD implant.
摘要:
A bitline mask pattern having reduced optical proximity effect for use in manufacturing a semiconductor memory device is disclosed. The bitline mask pattern comprises: a plurality of bitlines having a plurality of contact pads that are equally spaced apart. The bitlines are arranged parallel to each other in a columnar array and such that alternate bitlines have their contact pads aligned with each other. The contact pads having a rectangular shape, but at each corner of the contact pad, rectangular corner portions removed, and at opposing sides of the contact pads, rectangular side portions are removed.
摘要:
A transistor structure fabricated on a thin silicon-on-insulator layer. The transistor comprises: a body formed in a silicon layer of a first dopant type; a gate structure formed atop the body; a source adjacent a first edge of the gate structure formed of the first dopant type; and a drain adjacent a second edge of the gate structure formed of the first dopant type.
摘要:
An ETOX cell that has improved injection of electrons from a forward biased deep n-well to p-well junction underneath the channel area of a triple-well ETOX cell during substrate hot electron (SHE) programming. The ETOX cell has a control gate, a floating gate, a deep n-well formed in the substrate, a buried n+ layer in the deep n-well, a p-well formed in the n-well and atop the buried n+ layer, a drain implant formed in the p-well, and a source implant formed in the p-well. The buried n+ layer enhances the parasitic bipolar action between the n+ source/drain (as collector), the p-well (as base), and the buried n+ layer (as emitter). The parasitic transistor amplifies the amount of seed electrons injected into the p-well, which in turn results in significantly faster programming of the ETOX cell.
摘要:
A method of forming a flower shaped capacitor for a DRAM over a bitline is disclosed. The method comprises the steps of: forming a first polysilicon layer over said bitline; forming a TEOS layer over said first polysilicon layer, patterning and etching an opening through said TEOS layer; depositing a second polysilicon layer; etching back said second polysilicon layer and the first polysilicon layer to form sidewall spacers in said opening; using the first polysilicon layer and sidewall spacers as a mask, etching through to said bitline and thereby removing said TEOS layer; depositing a third polysilicon layer; patterning and etching the third polysilicon layer to form a bottom storage node of the capacitor; and forming a dielectric layer and a top conductive layer over the bottom storage node.
摘要:
A flash memory cell formed in a semiconductor substrate is disclosed. The cell includes a deep n-well formed within the substrate. Next, a p-well is formed within the deep n-well and a n+ drain region is formed within the p-well. A floating gate is formed above the p-well being separated from the substrate by a thin oxide layer. The floating gate is formed adjacent to the n+ drain region. Finally, a control gate is formed above the floating gate, the floating gate and the control gate being separated by a dielectric layer. The new cell is read by measuring the GIDL current at n+/p-well junction, which is exponentially modulated by the floating gate potential (or its net charge). The new cell is programmed by substrate hot electron injection and is erased by F-N tunneling through the overlap area of floating gate and p-well.
摘要:
A method for forming a metal interconnect structure over a high topography dielectric is disclosed. The method comprises the steps of: depositing a conductive layer over the high topography dielectric layer; depositing a planarized oxide layer over the conducting layer, patterning and etching the planarized oxide layer in accordance with a desired metal interconnect pattern using the conducting layer as an etching stop; using the planarized oxide layer as a hard mask, etching the conducting layer in accordance with the desired metal interconnect pattern imparted onto the planarized oxide layer; and depositing a gap-filling oxide layer over the planarized oxide layer and the high topography dielectric layer.
摘要:
A new method for injecting electrons from a forward biased deep n-well to p-well junction underneath the channel area of a triple-well ETOX cell during substrate hot electron (SHE) programming. The ETOX cell has a control gate, a floating gate, a deep n-well formed in the substrate, a p-well formed in the n-well, a drain implant formed in the p-well, and a source implant formed in the p-well. The method comprises the steps of: forward biasing the deep n-well relative to the p-well; positively biasing the control gate by a voltage sufficient to invert the channel between the source implant and the drain implant; and positively biasing the source and drain. The SHE programming has at least 100 times higher efficiency than channel hot electron (CHE). The cell threshold voltage (V.sub.T) saturates to a value in a self-convergent manner. The SHE can also be used for tightening the Vt spread by a re-programming technique after erase.