摘要:
A method for providing 11C-labeled cyanides from 11C labeled oxides in a target gas stream retrieved from an irradiated high pressure gaseous target containing O2, wherein 11C labeled oxides are reduced with H2 in the presence of a nickel catalyst under a pressure and a temperature sufficient to form a product stream comprising at least about 95% 11CH4, the 11CH4 is then combined with an excess of NH3 in a carrier/reaction stream flowing at an accelerated velocity and the combined 11CH4 carrier/reaction stream is then contacted with a platinum (Pt) catalyst particulate supported on a substantially-chemically-nonreactive heat-stable support at a temperature of at least about 900° C., whereby a product stream comprising at least about 60% H 11CN is provided in less than 10 minutes from retrieval of the 11C labeled oxide.
摘要:
The invention relates to a catalyst material comprising a support, a first metal and a second metal on said support. The first and second metals are in the form of a chemical compound. The first metal is Fe, Co or Ni, and the second metal is selected from the group consisting of Sn, Zn and In. The invention also relates to a process for the preparation of hydrogen cyanide (HCN) from methane (CH4) and ammonia (NH3), wherein the methane and ammonia are contacted with a catalyst according to the invention.
摘要:
The reaction tube comprises a cylindrical ceramic tube and a catalyst comprising platinum applied to the inner surface of the tube, wherein the reaction tube has fins on the inner surface which run in the longitudinal direction of the tube, extend into the interior space of the reaction tube and are coated with catalyst. The reaction tube is suitable for preparing hydrogen cyanide by reacting ammonia and at least one aliphatic hydrocarbon having 1 to 4 carbon atoms at a temperature of 1000 to 1400° C.
摘要:
The invention relates to a hydrocyanic acid containing bioresourced carbon, and to a method for producing a raw material mainly containing the same by reacting ammonia with methane or methanol optionally in the presence of air and/or oxygen, characterized in that at least one of the reagents selected from ammonia, methane and methanol is obtained from a biomass. The invention also relates to the uses of the raw material for producing acetone cyanohydrin, adiponitrile, methionine or methionine hydroxyl-analog, and sodium cyanide.
摘要:
A method for providing 11C-labeled cyanides from 11C labeled oxides in a target gas stream retrieved from an irradiated high pressure gaseous target containing O2, wherein 11C labeled oxides are reduced with H2 in the presence of a nickel catalyst under a pressure and a temperature sufficient to form a product stream comprising at least about 95% 11CH4, the 11CH4 is then combined with an excess of NH3 in a carrier/reaction stream flowing at an accelerated velocity and the combined 11CH4 carrier/reaction stream is then contacted with a platinum (Pt) catalyst particulate supported on a substantially-chemically-nonreactive heat-stable support at a temperature of at least about 900° C., whereby a product stream comprising at least about 60% H11CN is provided in less than 10 minutes from retrieval of the 11C labeled oxide.
摘要:
The reaction tube for preparing hydrogen cyanide comprises a cylindrical tube composed of ceramic, a catalyst comprising platinum applied to the inner wall of the tube and also at least one insert composed of ceramic, having three or four fins pointing from the tube axis to the inner wall of the tube, which is inserted into the cylindrical tube, wherein the fins divide the tube interior space into substantially straight channels with substantially identical circle segment cross sections and wherein the mean gap between the ends of the fins and the inner wall of the tube is in the range of 0.1 to 3 mm. In the method for preparing hydrogen cyanide, ammonia and at least one aliphatic hydrocarbon having 1 to 4 carbon atoms are reacted in the reaction tube at 1000 to 1400° C.
摘要:
The present invention relates to an integrated plant which comprises a plant for the electrothermic production of hydrogen cyanide and a plant for electricity generation, the plant for the electrothermic production of hydrogen cyanide being connected to the plant for electricity generation via a conduit and electricity being generated in the plant for electricity generation from a product gas obtained in the plant for the electrothermic production of hydrogen cyanide. This integrated plant affords flexible use of electricity by a method in which, at times of a high electricity supply, the plant for the electrothermic production of hydrogen cyanide is operated and at least some of the hydrogen and/or gaseous hydrocarbons obtained in addition to hydrogen cyanide is stored and, at times of a low electricity supply, stored hydrogen and/or gaseous hydrocarbons are fed to the plant for electricity generation.
摘要:
The invention relates to a hydrocyanic acid containing bioresource carbon, and to a method for producing a raw material mainly containing the same by reacting ammonia with methane or methanol optionally in the presence of air and/or oxygen, characterized in that at least one of the reagents selected from ammonia, methane and methanol is obtained from a biomass. The invention also relates to the uses of the raw material for producing acetone cyanohydrin, adiponitrile, methionine or methionine hydroxyl-analog, and sodium cyanide.
摘要:
The invention relates to an improvement to the BMA process for the production of hydrogen cyanide from methane and ammonia in the presence of a platinum-containing catalyst. The problem of sooting, and thus the decrease in activity, of the catalysts can be reduced, or the activity increased, in that the catalyst is doped with an element from the series Cu, Ag, Au, Pd and W. The doping is preferably in the range of 0.01 to 20 mole % doping element, based on Pt.
摘要:
The present invention relates to an improved process for producing hydrocyanic acid by reaction of ammonia with methane in which a small amount of at least one sulphur-containing compound corresponding to the general formula R S (S)x—R′ is added, in which R and R′, which are identical or different, represent a linear or branched alkyl or alkenyl radical containing from 1 to 5 carbon atoms, and x is a number ranging from 1 to 5, to the reactive gas mixture before it passes over the catalyst. The process according to the invention makes it possible to obtain improved yields of HCN. Another subject of the invention relates to the use of the resulting product for producing methionine, acetone cyanohydrin, adiponitrile or sodium cyanide.