Abstract:
Even a site having a complicated curved surface shape, such as a welded spot on a bottom of a nuclear reactor core, is simply and electrolytically etched without discharging an etching liquid in a large amount, whereby grain boundary on the surface of the nuclear reactor core internals can be confirmed visually.When the surface of nuclear reactor core internals is electrolytically etched, a sponge provided with holes having a communicating structure is integrated with an etching liquid, and the etching liquid is gelled, while the integrated combination is disposed in front of an electrode, followed by the application of voltage to turn on electricity at a state in which said electrode is electrically connected to the cathode of a direct-current power supply, and brought into contact with or approximated to the surface of the core internals electrically connected to the anode of the direct-current power supply.
Abstract:
An electrode cleaning system includes a medical device including a plurality of electrodes, a fluid reservoir including an electrolytic solution, and a cleaning device. The cleaning device is electrically coupled to the medical device, and is configured to channel a DC current between at least one pair of electrodes of the plurality of electrodes when the plurality of electrodes are submerged in the fluid reservoir.
Abstract:
Embodiments of the present invention include systems and methods for low-rate electrochemical (wet) etch that use a net cathodic current or potential. In particular, some embodiments achieve controlled etch rates of less than 0.1 nm/s by applying a small net cathodic current to a substrate as the substrate is submerged in an aqueous electrolyte. Depending on the embodiment, the aqueous electrolyte utilized may comprise the same type of cations as the material being etched from the substrate. Some embodiments are useful in etching thin film metals and alloys and fabrication of magnetic head transducer wafers.
Abstract:
Disclosed is a solution for an electrochemical process, the solution containing a sulfonic acid and having a low concentration of sulfur compounds, either low or high valence, that are susceptible to reduction and which is intended for use in electrodeposition, batteries, conductive polymers and descaling processes.
Abstract:
Disclosed is a solution for an electrochemical process, the solution containing a sulfonic acid and having a low concentration of sulfur compounds, either low or high valence, that are susceptible to reduction and which is intended for use in electrodeposition, batteries, conductive polymers and descaling processes.
Abstract:
Voltage controlled reconfiguration of liquid metal structures by providing an electrolyte in the container. A liquid metal structure is provided in the container and at least partially in contact with the electrolyte. A voltage is applied between the liquid metal structure and the electrolyte to change the shape of the liquid metal structure such that the structure achieves a desired shape for an electrical, optical, mechanical, or thermal application.
Abstract:
A method for the cathodic electrocoating of a tin-coated steel sheet in a treatment solution that does not contain any Cr compound, F or nitrite nitrogen. A tin oxide layer that is not subjected to a cathodic electrocoating treatment yet and is arranged on a tin-coated steel sheet is thinned to a specified thickness or less by a cathodic electrocoating treatment in an aqueous solution containing sodium carbonate or sodium hydrogen carbonate or an aqueous sulfuric acid solution immersion treatment, and the tin oxide layer is subjected to a cathodic electrocoating treatment in an aqueous solution of an alkaline metal sulfate containing a zirconium compound having a specified composition. In this manner, a coating film is formed on the tin oxide layer at a specific adhered amount in terms of Zr content.
Abstract:
Embodiments of the present invention include systems and methods for low-rate electrochemical (wet) etch that use a net cathodic current or potential. In particular, some embodiments achieve controlled etch rates of less than 0.1 nm/s by applying a small net cathodic current to a substrate as the substrate is submerged in an aqueous electrolyte. Depending on the embodiment, the aqueous electrolyte utilized may comprise the same type of cations as the material being etched from the substrate. Some embodiments are useful in etching thin film metals and alloys and fabrication of magnetic head transducer wafers.